Skip to main content

Molecular Biology of Bladder Cancer

  • Chapter
Urological Cancers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raghavan D, Shipley W, Garnick M, Russell P, Richie J. Biology and management of bladder cancer. N Engl J Med 1990;322:1129–1138.

    Article  PubMed  CAS  Google Scholar 

  2. Cutler SJ, Heney NM, Friedell GH. Longitudinal study of patients with bladder cancer: factors associated with disease recurrence and progression. In: Bonney WW, Prout GR Jr, eds. Bladder Cancer. Baltimore: Williams and Wilkins, 1982: 35–46.

    Google Scholar 

  3. Farrow GM, Utz DC, Rife CC, Greene LF. Clinical observations on sixty-nine cases of in situ carcinoma of the urinary bladder. Cancer Res 1977; 37(8 pt 2):2794–2798.

    PubMed  CAS  Google Scholar 

  4. Schade ROK, Swinney J. Pre-cancerous changes in bladder epithelium. Lancet 1968;2:943–946.

    PubMed  CAS  Google Scholar 

  5. Hafner C, Knuechel R, Stoehr R, Hartmann A. Clonality of multifocal urothelial carcinomas: 10 years of molecular genetic studies. Int J Cancer 2002;101(1):1–6.

    PubMed  CAS  Google Scholar 

  6. WHO. WHO Classification Tumours of the Urinary System and Male Genital Organs. Lyon: IARC Press, 2004.

    Google Scholar 

  7. Fadl-Elmula I, Gorunova L, Mandahl N, et al. Karyotypic characterization of urinary bladder transitional cell carcinomas. Genes Chromosomes Cancer 2000;29(3):256–265.

    PubMed  CAS  Google Scholar 

  8. Tsai YC, Nichols PW, Hiti AL, Williams Z, Skinner DG, Jones PA. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res 1990;50:44–47.

    PubMed  CAS  Google Scholar 

  9. Shaw ME, Knowles MA. Deletion mapping of chromosome 11 in carcinoma of the bladder. Genes Chromosomes Cancer 1995;13:1–8.

    PubMed  CAS  Google Scholar 

  10. Zhao J, Richter J, Wagner U, et al. Chromosomal imbalances in noninvasive papillary bladder neoplasms (pTa). Cancer Res 1999;59(18):4658–4661.

    PubMed  CAS  Google Scholar 

  11. Takahashi T, Habuchi T, Kakehi Y, et al. Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract. Cancer Res 1998;58(24):5835–5841.

    PubMed  CAS  Google Scholar 

  12. Cairns P, Shaw ME, Knowles MA. Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene 1993;8:1083–1085.

    PubMed  CAS  Google Scholar 

  13. Linnenbach AJ, Pressler LB, Seng BA, Simmel BS, Tomaszewski JE, Malkowicz SB. Characterization of chromosome 9 deletions in transitional cell carcinoma by microsatellite assay. Human Mol Gen 1993;2(9):1407–1411.

    CAS  Google Scholar 

  14. Simoneau M, Aboulkassim TO, LaRue H, Rousseau F, Fradet Y. Four tumor suppressor loci on chromosome 9q in bladder cancer: evidence for two novel candidate regions at 9q22.3 and 9q31. Oncogene 1999;18(1):157–163.

    PubMed  CAS  Google Scholar 

  15. van Tilborg AA, de Vries A, de Bont M, Groenfeld LE, van der Kwast TH, Zwarthoff EC. Molecular evolution of multiple recurrent cancers of the bladder. Hum Mol Genet 2000;9(20):2973–2980.

    PubMed  Google Scholar 

  16. Louhelainen J, Wijkstrom H, Hemminki K. Initiation-development modelling of allelic losses on chromosome 9 in multifocal bladder cancer. Eur J Cancer 2000;36(11):1441–1451.

    PubMed  CAS  Google Scholar 

  17. Hartmann A, Moser K, Kriegmair M, Hofstetter A, Hofstaedter F, Knuechel R. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am J Pathol 1999;154(3):721–727.

    PubMed  CAS  Google Scholar 

  18. Aboulkassim TO, LaRue H, Lemieux P, Rousseau F, Fradet Y. Alteration of the PATCHED locus in superficial bladder cancer. Oncogene 2003;22(19):2967–2971.

    PubMed  CAS  Google Scholar 

  19. Habuchi T, Luscombe M, Elder PA, Knowles MA. Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32–q33. Genomics 1998;48(3):277–2788.

    PubMed  CAS  Google Scholar 

  20. Czerniak B, Chaturvedi V, Li L, et al. Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep urothelial carcinogenesis and early detection of urinary bladder cancer. Oncogene 1999;18(5):1185–1196.

    PubMed  CAS  Google Scholar 

  21. Wada T, Berggren P, Steineck G, et al. Bladder neoplasms-regions at chromosome 9 with putative tumour suppressor genes. Scand J Urol Nephrol 2003;37(2):106–111.

    PubMed  CAS  Google Scholar 

  22. Cairns P, Mao L, Merlo A, et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 1994;265(5170):415–417.

    PubMed  CAS  Google Scholar 

  23. Devlin J, Keen AJ, Knowles MA. Homozygous deletion mapping at 9p21 in bladder carcinoma defines a critical region within 2cM of IFNA. Oncogene 1994;9:2757–2760.

    PubMed  CAS  Google Scholar 

  24. Orlow I, Lacombe L, Hannon GJ, et al. Deletion of the p16 and p15 genes in human bladder tumors. J Natl Cancer Inst 1995;87:1524–1529.

    PubMed  CAS  Google Scholar 

  25. Williamson MP, Elder PA, Shaw ME, Devlin J, Knowles MA. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet 1995;4:1569–1577.

    PubMed  CAS  Google Scholar 

  26. Berggren P, Kumar R, Sakano S, et al. Detecting homozygous deletions in the CDKN2A (p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res 2003;9(1):235–242.

    PubMed  CAS  Google Scholar 

  27. McGarvey TW, Maruta Y, Tomaszewski JE, Linnenbach AJ, Malkowicz SB. PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene 1998;17(9):1167–1172.

    PubMed  CAS  Google Scholar 

  28. Nishiyama H, Takahashi T, Kakehi Y, Habuchi T, Knowles MA. Homozygous deletion at the 9q32–33 candidate tumor suppressor locus in primary bladder cancer. Genes Chromosomes Cancer 1999;26:171–175.

    PubMed  CAS  Google Scholar 

  29. Stadler WM, Steinberg G, Yang X, Hagos F, Turner C, Olopade OI. Alterations of the 9p21 and 9q33 chromosomal bands in clinical bladder cancer specimens by fluorescence in situ hybridization. Clin Cancer Res 2001;7(6):1676–1682.

    PubMed  CAS  Google Scholar 

  30. Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D. Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 2003;63:7652–7656.

    PubMed  CAS  Google Scholar 

  31. Hornigold N, Devlin J, Davies AM, Aveyard JS, Habuchi Y, Knowles MA. Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene 1999;18:2657–2661.

    PubMed  CAS  Google Scholar 

  32. Adachi H, Igawa M, Shiina H, Urakami S, Shigeno K, Hino O. Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol 2003;170(2 Pt 1):601–604.

    PubMed  CAS  Google Scholar 

  33. Chang LL, Yeh WT, Yang SY, Wu WJ, Huang CH. Genetic alterations of p16INK4a and p14ARF genes in human bladder cancer. J Urol 2003;170(2 Pt 1):595–600.

    PubMed  CAS  Google Scholar 

  34. Florl AR, Franke KH, Niederacher D, Gerharz CD, Seifert HH, Schulz WA. DNA methylation and the mechanisms of CDKN2A inactivation in transitional cell carcinoma of the urinary bladder. Lab Invest 2000;80(10):1513–1522.

    PubMed  CAS  Google Scholar 

  35. Orlow I, LaRue H, Osman I, et al. Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 1999;155(1):105–113.

    PubMed  CAS  Google Scholar 

  36. Serrano M. The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis 2000;21(5):865–869.

    PubMed  CAS  Google Scholar 

  37. Carnero A, Hudson JD, Price CM, Beach DH. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000;2(3):148–155.

    PubMed  CAS  Google Scholar 

  38. Habuchi T, Takahashi T, Kakinuma H, et al. Hypermethylation at 9q32–33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene 2001;20:531–537.

    PubMed  CAS  Google Scholar 

  39. Wright KO, Messing EM, Reeder JE. DBCCR1 mediates death in cultured bladder tumor cells. Oncogene 2004;23(1):82–90.

    PubMed  CAS  Google Scholar 

  40. Nishiyama H, Gill JH, Pitt E, Kennedy W, Knowles MA. Negative regulation of G1/S transition by the candidate bladder tumour suppressor gene DBCCR1. Oncogene 2001;20:2956–2964.

    PubMed  CAS  Google Scholar 

  41. Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans 2003;31 (pt 3):573–578.

    PubMed  CAS  Google Scholar 

  42. Cappellen D, De Oliveira C, Ricol D, et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 1999;23(1):18–20.

    PubMed  CAS  Google Scholar 

  43. Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary noninvasive bladder (pTa) tumors. Am J Pathol 2001;158(6):1955–1959.

    PubMed  CAS  Google Scholar 

  44. Sibley K, Stern P, Knowles MA. Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene 2001;20(32):4416–4418.

    PubMed  CAS  Google Scholar 

  45. van Rhijn BW, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 2001;61(4):1265–1268.

    PubMed  Google Scholar 

  46. Elder PA, Bell SM, Knowles MA. Deletion of two regions on chromosome 4 in bladder carcinoma: definition of a critical 750 kB region at 4p16.3. Oncogene 1994;9(12):3433–3436.

    PubMed  CAS  Google Scholar 

  47. Sibley K, Cuthbert-Heavens D, Knowles MA. Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene 2001;20:686–691.

    PubMed  CAS  Google Scholar 

  48. van Rhijn BW, Montironi R, Zwarthoff EC, Jobsis AC, van der Kwast TH. Frequent FGFR3 mutations in urothelial papilloma. J Pathol 2002;198(2):245–251.

    PubMed  Google Scholar 

  49. Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat 1999;14(2):115–125.

    PubMed  CAS  Google Scholar 

  50. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2(3):3005.1–3005.12.

    Google Scholar 

  51. Karoui M, Hofmann-Radvanyi H, Zimmermann U, et al. No evidence of somatic FGFR3 mutation in various types of carcinoma. Oncogene 2001;20(36):5059–5061.

    PubMed  CAS  Google Scholar 

  52. Zlotta AR, Noel JC, Fayt I, et al. Correlation and prognostic significance of p53, p21 WAF1/CIP1 and Ki-67 expression in patients with superficial bladder tumors treated with bacillus Calmette-Guerin intravesical therapy. J Urol 1999;161(3):792–798.

    PubMed  CAS  Google Scholar 

  53. Liukkonen T, Rajala P, Raitanen M, Rintala E, Kaasinen E, Lipponen P. Prognostic value of MIB-1 score, p53, EGFr, mitotic index and papillary status in primary superficial (Stage pTa/T1) bladder cancer: a prospective comparative study. The Finnbladder Group. Eur Urol 1999;36(5):393–400.

    PubMed  CAS  Google Scholar 

  54. Pfister C, Moore L, Allard P, et al. Predictive value of cell cycle markers p53, MDM2, p21, and Ki-67 in superficial bladder tumor recurrence. Clin Cancer Res 1999;5(12):4079–4084.

    PubMed  CAS  Google Scholar 

  55. Harnden P, Mahmood J, Southgate J. Cytokeratin 20 expression redefines uroepithelial papillomas of the bladder. Lancet 1999;353:974–977.

    PubMed  CAS  Google Scholar 

  56. Simoneau M, LaRue H, Aboulkassim TO, Meyer F, Moore L, Fradet Y. Chromosome 9 deletions and recurrence of superficial bladder cancer: identification of four regions of prognostic interest. Oncogene 2000;19(54):6317–6323.

    PubMed  CAS  Google Scholar 

  57. Edwards J, Duncan P, Going JJ, Watters AD, Grigor KM, Bartlett JM. Identification of loci associated with putative recurrence genes in transitional cell carcinoma of the urinary bladder. J Pathol 2002;196(4):380–385.

    PubMed  Google Scholar 

  58. van Rhijn BW, Vis AN, van der Kwast TH, et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 2003;21(10):1912–1921.

    PubMed  Google Scholar 

  59. Rieger-Christ KM, Mourtzinos A, Lee PJ, et al. Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 2003;98(4):737–744.

    PubMed  CAS  Google Scholar 

  60. van Rhijn BW, Lurkin I, Chopin DK, et al. Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res 2003;9(1):257–263.

    PubMed  Google Scholar 

  61. Durkan GC, Nutt JE, Marsh C, et al. Alteration in urinary matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio predicts recurrence in nonmuscle-invasive bladder cancer. Clin Cancer Res 2003;9(7):2576–2582.

    PubMed  CAS  Google Scholar 

  62. Dominguez G, Carballido J, Silva J, et al. p14ARF Promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res 2002;8(4):980–985.

    PubMed  CAS  Google Scholar 

  63. Tada Y, Wada M, Taguchi K, et al. The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res 2002;62(14):4048–4053.

    PubMed  CAS  Google Scholar 

  64. Lipponen PK, Eskelinen MJ. Reduced expression of E-cadherin is related to invasive disease and frequent recurrence in bladder cancer. J Cancer Res Clin Oncol 1995;121(5):303–308.

    PubMed  CAS  Google Scholar 

  65. Ariel I, Sughayer M, Fellig Y, et al. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol 2000;53(6):320–323.

    PubMed  CAS  Google Scholar 

  66. Swana HS, Grossman D, Anthony JN, Weiss RM, Altieri DC. Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer. N Engl J Med 1999;341(6):452–453.

    PubMed  CAS  Google Scholar 

  67. Sarkis AS, Zhang Z-F, Cordon-Cardo C, et al. p53 nuclear overexpression and disease progression in Ta bladder carcinoma. Int J Oncol 1993;3:355–360.

    Google Scholar 

  68. Bringuier PP, Umbas R, Schaafsma E, Karthaus HFM, Debruyne FMJ, Schalken JA. Decreased Ecadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res 1993;53:3241–3245.

    PubMed  CAS  Google Scholar 

  69. Urist MJ, Di Como CJ, Lu ML, et al. Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 2002;161(4):1199–1206.

    PubMed  CAS  Google Scholar 

  70. Richter J, Wagner U, Schraml P, et al. Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res 1999;59(22):5687–5691.

    PubMed  CAS  Google Scholar 

  71. Lipponen P. Expression of c-erbB-2 oncoprotein in transitional cell bladder cancer. Eur J Cancer 1993;29A(5):749–753.

    PubMed  CAS  Google Scholar 

  72. Gardiner RA, Samaratunga ML, Walsh MD, Seymour GJ, Lavin MF. An immunohistological demonstration of c-erbB-2 oncoprotein expression in primary urothelial bladder cancer. Urol Res 1992;20(2):117–120.

    PubMed  CAS  Google Scholar 

  73. Coombs LM, Pigott DA, Sweeney E, et al. Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer 1991;63(4):601–608.

    PubMed  CAS  Google Scholar 

  74. Sauter G, Moch H, Moore D, et al. Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 1993;53:2199–2203.

    PubMed  CAS  Google Scholar 

  75. Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL. The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer 1990;65(7):1619–1625.

    PubMed  CAS  Google Scholar 

  76. Habuchi T, Kinoshita H, Yamada H, et al. Oncogene amplification in urothelial cancers with p53 gene mutation or MDM2 amplification. J Natl Cancer Inst 1994;86:1331–1335.

    PubMed  CAS  Google Scholar 

  77. Tuna B, Yorukoglu K, Tuzel E, Guray M, Mungan U, Kirkali Z. Expression of p53 and mdm2 and their significance in recurrence of superficial bladder cancer. Pathol Res Pract 2003;199(5):323–328.

    PubMed  CAS  Google Scholar 

  78. Schmitz-Drager BJ, Kushima M, Goebell P, et al. p53 and MDM2 in the development and progression of bladder cancer. Eur Urol 1997;32(4):487–493.

    PubMed  CAS  Google Scholar 

  79. Theodorescu D, Cornil I, Fernandez BJ, Kerbel RS. Overexpression of normal and mutated forms of HRAS induces orthotopic bladder invasion in a human transitional cell carcinoma. Proc Natl Acad Sci USA 1990;87(22):9047–9051.

    PubMed  CAS  Google Scholar 

  80. Theodorescu D, Cornil I, Sheehan C, Man MS, Kerbel RS. Ha-ras induction of the invasive phenotype results in up-regulation of epidermal growth factor receptors and altered responsiveness to epidermal growth factor in human papillary transitional cell carcinoma cells. Cancer Res 1991;51:4486–4491.

    PubMed  CAS  Google Scholar 

  81. Zhang ZT, Pak J, Huang HY, et al. Role of Haras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 2001;20(16):1973–1980.

    PubMed  CAS  Google Scholar 

  82. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2(2):103–112.

    PubMed  CAS  Google Scholar 

  83. Sidransky D, von Eschenbach A, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991;252:706–709.

    PubMed  CAS  Google Scholar 

  84. Fujimoto K, Yamada Y, Okajima E, et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Research 1992;52:1393–1398.

    PubMed  CAS  Google Scholar 

  85. Williamson MP, Elder PA, Knowles MA. The spectrum of TP53 mutations in bladder carcinoma. Genes Chromosomes Cancer 1994;9:108–118.

    PubMed  CAS  Google Scholar 

  86. Habuchi T, Takahashi R, Yamada H, et al. Influence of cigarette smoking and schistosomiasis on p53 gene mutation in urothelial cancer. Cancer Res 1993;53:3795–3799.

    PubMed  CAS  Google Scholar 

  87. Spruck CH III, Rideout WM III, Olumi AF, et al. Distinct pattern of p53 mutations in bladder cancer: relationship to tobacco usage. Cancer Res 1993;53:1162–1166.

    PubMed  CAS  Google Scholar 

  88. Esrig D, Spruck CHd, Nichols PW, et al. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 1993;143(5):1389–1397.

    PubMed  CAS  Google Scholar 

  89. Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 1994;331:1259–1264.

    PubMed  CAS  Google Scholar 

  90. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Association of p53 nuclear overexpression and tumor progression in carcinoma in situ of the bladder. J Urol 1994;152:388–392.

    PubMed  CAS  Google Scholar 

  91. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst 1993;85:53–59.

    PubMed  CAS  Google Scholar 

  92. Stein JP, Ginsberg DA, Grossfeld GD, et al. Effect of p21 WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 1998;90(14):1072–1079.

    PubMed  CAS  Google Scholar 

  93. Qureshi KN, Griffiths TR, Robinson MC, et al. Combined p21 WAF1/CIP1 and p53 overexpression predict improved survival in muscleinvasive bladder cancer treated by radical radiotherapy. Int J Radiat Oncol Biol Phys 2001;51(5):1234–1240.

    PubMed  CAS  Google Scholar 

  94. Schmitz-Drager BJ, Goebell PJ, Ebert T, Fradet Y. p53 immunohistochemistry as a prognostic marker in bladder cancer. Playground for urology scientists? Eur Urol 2000;38(6):691–699; discussion 700.

    PubMed  CAS  Google Scholar 

  95. Cairns P, Proctor AJ, Knowles MA. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 1991;6:2305–2309.

    PubMed  CAS  Google Scholar 

  96. Logothetis CJ, Xu H-J, Ro JY, et al. Altered expression of retinoblastoma protein and known prognostic variables in locally advanced bladder cancer. J Natl Cancer Inst 1992;84:1256–1261.

    PubMed  CAS  Google Scholar 

  97. Cordon-Cardo C, Wartinger D, Petrylak D, et al. Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J Natl Cancer Inst 1992;84:1251–1256.

    PubMed  CAS  Google Scholar 

  98. Xu H-J, Cairns P, Hu S-X, Knowles MA, Benedict WF. Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression. Int J Cancer 1993;53:781–784.

    PubMed  CAS  Google Scholar 

  99. Cordon-Cardo C, Zhang Z-F, Dalbagni G, et al. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res 1997;57:1217–1221.

    PubMed  CAS  Google Scholar 

  100. Cote RJ, Dunn MD, Chatterjee SJ, et al. Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res 1998;58(6):1090–1094.

    PubMed  CAS  Google Scholar 

  101. Grossman HB, Liebert M, Antelo M, et al. p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res 1998;4(4):829–834.

    PubMed  CAS  Google Scholar 

  102. Shiina H, Igawa M, Shigeno K, et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol 2002;168(5):2220–2226.

    PubMed  CAS  Google Scholar 

  103. Wagner U, Suess K, Luginbuhl T, et al. Cyclin D1 overexpression lacks prognostic significance in superficial urinary bladder cancer. J Pathol 1999;188(1):44–50.

    PubMed  CAS  Google Scholar 

  104. Kagan J, Liu J, Stein JD, et al. Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene 1998;16(7):909–913.

    PubMed  CAS  Google Scholar 

  105. Cappellen D, Gil Diez de Medina S, Chopin D, Thiery JP, Radvanyi F. Frequent loss of heterozygosity on chromosome 10q in muscle-invasive. Oncogene 1997;14(25):3059–3066.

    PubMed  CAS  Google Scholar 

  106. Aveyard JS, Skilleter A, Habuchi T, Knowles MA. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 1999;80:904–908.

    PubMed  CAS  Google Scholar 

  107. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001;114 (pt 13):2375–2382.

    PubMed  CAS  Google Scholar 

  108. Cairns P, Evron E, Okami K, et al. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 1998;16(24):3215–3218.

    PubMed  CAS  Google Scholar 

  109. Liu J, Babaian DC, Liebert M, Steck PA, Kagan J. Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Mol Carcinog 2000;29(3):143–150.

    PubMed  CAS  Google Scholar 

  110. Wang DS, Rieger-Christ K, Latini JM, et al. Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. Int J Cancer 2000;88(4):620–625.

    PubMed  CAS  Google Scholar 

  111. Tanaka M, Koul D, Davies MA, Liebert M, Steck PA, Grossman HB. MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 2000;19(47):5406–5412.

    PubMed  CAS  Google Scholar 

  112. Gonzalez-Zulueta M, Ruppert JM, et al. Microsatellite instability in bladder cancer. Cancer Res 1993;53:5620–5623.

    PubMed  CAS  Google Scholar 

  113. Hovey RM, Chu L, Balazs M, et al. Genetic alterations in primary bladder cancers and their metastases. Cancer Res 1998;58(16):3555–3560.

    PubMed  CAS  Google Scholar 

  114. Rosin MP, Cairns P, Epstein JI, Schoenberg MP, Sidransky D. Partial allelotype of carcinoma in situ of the human bladder. Cancer Res 1995;55:5213–5216.

    PubMed  CAS  Google Scholar 

  115. Lonn U, Lonn S, Friberg S, Nilsson B, Silfversward C, Stenkvist B. Prognostic value of amplification of c-erb-B2 in bladder carcinoma. Clin Cancer Res 1995;1(10):1189–1194.

    PubMed  CAS  Google Scholar 

  116. Mellon K, Wright C, Kelly P, Horne CH, Neal DE. Long-term outcome related to epidermal growth factor receptor status in bladder cancer. J Urol 1995;153(3 pt 2):919–925.

    PubMed  CAS  Google Scholar 

  117. Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst 1997;89(3):219–227.

    PubMed  CAS  Google Scholar 

  118. Raghavan D. Molecular targeting and pharmacogenomics in the management of advanced bladder cancer. Cancer 2003;97(8 suppl):2083–2089.

    PubMed  CAS  Google Scholar 

  119. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 2003;63(23):8108–8112.

    PubMed  CAS  Google Scholar 

  120. van Rhijn BW, van der Kwast TH, Vis AN, et al. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res 2004;64(6):1911–1914.

    PubMed  Google Scholar 

  121. Veltman JA, Fridlyand J, Pejavar S, et al. Arraybased comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 2003;63(11):2872–2880.

    PubMed  CAS  Google Scholar 

  122. Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 2004;23:2250–2263.

    PubMed  CAS  Google Scholar 

  123. Sanchez-Carbayo M, Socci ND, Lozano JJ, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol 2003;163(2):505–516.

    PubMed  CAS  Google Scholar 

  124. Sanchez-Carbayo M, Socci ND, Charytonowicz E, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res 2002;62(23):6973–6980.

    PubMed  CAS  Google Scholar 

  125. Dyrskjot L, Thykjaer T, Kruhoffer M, et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 2003;33(1):90–96.

    PubMed  CAS  Google Scholar 

  126. Thykjaer T, Workman C, Kruhoffer M, et al. Identification of gene expression patterns in superficial and invasive human bladder cancer. Cancer Res 2001;61(6):2492–2499.

    PubMed  CAS  Google Scholar 

  127. Knowles MA, Williamson M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res 1993;53(1):133–139.

    PubMed  CAS  Google Scholar 

  128. Ooi A, Herz F, Ii S, et al. Ha-ras codon 12 mutation in papillary tumors of the urinary bladder: a retrospective study. Int J Oncol 1994;4:85–90.

    CAS  Google Scholar 

  129. Fitzgerald JM, Ramchurren N, Rieger K, et al. Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J Natl Cancer Inst 1995;87:129–133.

    PubMed  CAS  Google Scholar 

  130. Sato K, Moriyama M, Mori S, et al. An immunohistologic evaluation of c-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer 1992;70:2493–2498.

    PubMed  CAS  Google Scholar 

  131. Proctor AJ, Coombs LM, Cairns JP, Knowles MA. Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene 1991;6:789–795.

    PubMed  CAS  Google Scholar 

  132. Bringuier PP, Tamimi J, Schuuring E. Amplification of the chromosome 11q13 region in bladder tumours. Urol Res 1994;21:451.

    Google Scholar 

  133. Lianes P, Orlow I, Zhang Z-F, et al. Altered patterns of MDM2 and TP53 expression in human bladder cancer. J Natl Cancer Inst 1994;86:1325–1330.

    PubMed  CAS  Google Scholar 

  134. Cairns P, Tokino K, Eby Y, Sidransky D. Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex4 polymerase chain reaction. Cancer Res 1994;54:1422–1424.1

    PubMed  CAS  Google Scholar 

  135. Yeager TR, DeVries S, Jarrard DF, et al. Overcoming cellular senescence in human cancer pathogenesis. Genes Dev 1998;12(2):163–174.0

    PubMed  CAS  Google Scholar 

  136. Habuchi T, Yoshida O, Knowles MA. A novel candidate tumour suppressor locus at 9q32–33 in bladder cancer: localisation of the candidate region within a single 840 kb YAC. Hum Mol Genet 1997;6:913–919.

    PubMed  CAS  Google Scholar 

  137. Brewster SF, Gingell JC, Browne S, Brown KW. Loss of heterozygosity on chromosome 18q is associated with muscle-invasive transitional cell carcinoma of the bladder. Br J Cancer 1994;70:697–700.

    PubMed  CAS  Google Scholar 

  138. Presti JC, Jr., Reuter VE, Galan T, Fair WR, Cordon-Cardo C. Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res 1991;51(19):5405–5409.

    PubMed  Google Scholar 

  139. Polascik TJ, Cairns P, Chang WYH, Schoenberg MP, Sidransky D. Distinct regions of allelic loss on chromosome 4 in human primary bladder carcinoma. Cancer Res 1995;55:5396–5399.

    PubMed  CAS  Google Scholar 

  140. Takle LA, Knowles MA. Deletion mapping implicates two tumor suppressor genes on chromosome 8p in the development of bladder cancer. Oncogene 1996;12(5):1083–1087.

    PubMed  CAS  Google Scholar 

  141. Ohgaki K, Iida A, Ogawa O, Kubota Y, Akimoto M, Emi M. Localization of tumor suppressor gene associated with distant metastasis of urinary bladder cancer to a 1-Mb interval on 8p22. Genes Chromosomes Cancer 1999;25(1):1–5.

    PubMed  CAS  Google Scholar 

  142. Choi C, Kim MH, Juhng SW, Oh BR. Loss of heterozygosity at chromosome segments 8p22 and 8p11.2–21.1 in transitional-cell carcinoma of the urinary bladder. Int J Cancer 2000;86(4):501–505.

    PubMed  CAS  Google Scholar 

  143. Habuchi T, Devlin J, Elder PA, Knowles MA. Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene 1995;11:1671–1674.

    PubMed  CAS  Google Scholar 

  144. Fearon ER, Feinberg AP, Hamilton SH, Vogelstein B. Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 1985;318:377–380.

    PubMed  CAS  Google Scholar 

  145. Chang WY-H, Cairns P, Schoenberg MP, Polascik TJ, Sidransky D. Novel suppressor loci on chromosome 14q in primary bladder cancer. Cancer Res 1995;55:3246–3249.

    PubMed  CAS  Google Scholar 

  146. Simon R, Burger H, Brinkschmidt C, Bocker W, Hertle L, Terpe HJ. Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol 1998;185(4):345–351.

    PubMed  CAS  Google Scholar 

  147. Richter J, Beffa L, Wagner U, Schraml P, Gasser TC, Moch H, et al. Patterns of chromosomal imbalances in advanced urinary bladder cancer detected by comparative genomic hybridization. Am J Pathol 1998;153(5):1615–1621.

    PubMed  CAS  Google Scholar 

  148. Kallioniemi A, Kallioniemi O-P, Citro G, et al. Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridisation. Genes Chromosomes and Cancer 1995;12:213–219.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Knowles, M.A. (2005). Molecular Biology of Bladder Cancer. In: Waxman, J. (eds) Urological Cancers. Springer, London. https://doi.org/10.1007/1-84628-015-X_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-015-X_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-911-1

  • Online ISBN: 978-1-84628-015-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics