Skip to main content

Multivariable Systems

  • Chapter
Autotuning of PID Controllers
  • 2273 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.7 References

  1. Koivo HN, Pohjolainen S. Tuning of multivariable PI controller for unknown systems with input delay. Automatica 1985;21:81.

    Article  MathSciNet  Google Scholar 

  2. Cao R, McAvoy TJ. Evaluation of pattern recognition adaptive PID controller. Automatica 1990;26:797.

    Article  Google Scholar 

  3. Hsu L, Chan M, Bhaya A. Automated synthesis of decentralized tuning regulators for systems with measurable DC gain. Automatica 1992;28:185.

    Article  MathSciNet  Google Scholar 

  4. Åström KJ, Hägglund T. Automatic tuning of simple regulators with specifications on phase and amplitude mMargins. Automatic 1984;20:645.

    Article  Google Scholar 

  5. Åström KJ, Hang CC, Persson P, Ho WK. Towards intelligent PID control. Automatica 1992;28:1.

    Article  Google Scholar 

  6. Schei TS. A method for closed loop automatic tuning of PID controllers. Automatica 1992;28:587.

    Article  MATH  Google Scholar 

  7. Chiu MS, Arkun Y. A methodology for sequential design of robust decentralized control systems. Automatica 1992;28:997.

    Article  MathSciNet  Google Scholar 

  8. Luyben WL. Simple method for tuning SISO controllers in multivariable systems. Ind. Eng. Chem. Process Des. Dev. 1986;25:654.

    Article  Google Scholar 

  9. Skogestad S, Landström P. μ-optimal LV-control of distillation columns. Comput. Chem. Eng. 1990;14:401.

    Article  Google Scholar 

  10. Mayne DQ. The design of linear multivariable systems. Automatica 1973;9:201.

    Article  MATH  Google Scholar 

  11. Mayne DQ. Sequential design of linear multivariable systems. Proc. IEE Part D 1979;126:568.

    Google Scholar 

  12. Bernstein DS. Sequential design of decentralized dynamic compensators using the optimal projection equations. Int. J. Control 1987;46:1569.

    MATH  Google Scholar 

  13. O’Reilly J, Leithead WE. Multivariable control by individual channel design. Int. J. Control 1991;54:1.

    MathSciNet  Google Scholar 

  14. Leithead WE, O’Reilly J. Performance issues in the individual channel design of 2-input 2-output systems. Part 1. Structural issues. Int. J. Control 1991;54:47.

    MathSciNet  Google Scholar 

  15. Bhalodia M, Weber TW. Feedback control of a two-input, two-output interacting process. Ind. Eng. Chem. Process Des. Dev. 1979;18:599.

    Article  Google Scholar 

  16. Grosdidier P, Morari M, Holt RB. Closed-loop properties from steady-state gain information. Ind. Eng. Chem. Process Des. Dev. 1985;24:221.

    Article  Google Scholar 

  17. Yu CC, Fan MKH. Decentralized integral controllability and D-stability. Chem. Eng. Sci. 1990;45:3299.

    Article  Google Scholar 

  18. Bristol EH. New measure of interaction for multivariable process control. IEEE Trans. Automat. Control 1966;AC-11:133.

    Article  Google Scholar 

  19. Luyben WL. Derivation of transfer functions for highly nonlinear distillation columns. Ind. Eng. Chem. Res. 1987;26:2490.

    Article  Google Scholar 

  20. Chang DM, Yu CC. The distillate-bottoms control of distillation columns: Modeling, tuning and robustness issues. J. Chin. Inst. Chem. Eng. 1992;23:344.

    Google Scholar 

  21. Luyben WL. Sensitivity of distillation relative gain arrays to steady-state gains. Ind. Eng. Chem. Res. 1987;26:2076.

    Article  Google Scholar 

  22. Häggblom KE, Waller KV. Transformations and consistency relations of distillation control structures. AIChE J. 1988;34:1634.

    Article  Google Scholar 

  23. Häggblom KE, Waller KV. Control structure, consistency, and transformations. Practical distillation control. Luyben. WL. ed. New York: Van Nostrand Reinhold; 1992.

    Google Scholar 

  24. Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Trans. ASME 1942;12:759.

    Google Scholar 

  25. Seborg DE, Edgar TF, Mellichamp DA. Process dynamics and control. 2nd ed. New York: Wiley; 2004.

    Google Scholar 

  26. Luyben WL. Process modeling, simulation and control for chemical engineers. 2nd ed. New York: McGraw-Hill; 1990.

    Google Scholar 

  27. Tan LY, Weber TW. Controller tuning of a third-order process under proportional—integral control. Ind. Eng. Chem. Process Des. Dev. 1985;24:155.

    Article  Google Scholar 

  28. Marino-Galarraga M, McAvoy TJ, Marlin TE. Short-cut operability analysis. 2. estimation of fi detuning parameter for classical control systems. Ind. Eng. Chem. Res. 1987;26:511.

    Article  Google Scholar 

  29. Rice JR. Numerical methods, software, and analysis. New York: McGraw-Hill; 1983.

    Google Scholar 

  30. Shen SH, Yu CC. Use of relay feedback test for automatic tuning of multivariable systems. AIChE J. 1994;40:627.

    Article  Google Scholar 

  31. Shen SH, Yu CC. Indirect feedforward control: Multivariable systems. Chem. Eng. Sci. 1992;47:3085.

    Article  Google Scholar 

  32. Papastathopoulou HS, Luyben WL. Tuning controllers on distillation columns with the distillate-bottoms structure. Ind. Eng. Chem. Res. 1990;29:1859.

    Article  Google Scholar 

  33. Fuentes C, Luyben WL. Control of high-purity distillation columns. Ind. Eng. Chem. Process Des. Dev. 1983;22:361.

    Article  Google Scholar 

  34. Chiang TP, Luyben WL. Comparison of the dynamic performances of three heat-integrated distillation configurations. Ind. Eng. Chem. Res. 1988;27:99.

    Article  Google Scholar 

  35. Huang SG, Kuo CL, Hung SB, Chen YW, Yu CC. Temperature control of heterogeneous reactive distillation: Butyl propionate and butyl acetate esterification. AIChE J., 2004;50:2203.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2006). Multivariable Systems. In: Autotuning of PID Controllers. Springer, London. https://doi.org/10.1007/1-84628-037-0_6

Download citation

  • DOI: https://doi.org/10.1007/1-84628-037-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-036-8

  • Online ISBN: 978-1-84628-037-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics