Skip to main content

Evolving Role of FDG-PET Imaging in the Management of Patients with Suspected Infection and Inflammatory Disorders

  • Chapter
Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischman A, Babich J, Strauss H. A ticket to ride: peptide radiopharmaceuticals. J Nucl Med 1993;4:2253–2263.

    Google Scholar 

  2. Boerman O, Oyen W, Corstens F, Storm G. Liposomes for scintigraphic imaging: optimization of in vivo behavior. Q J Nucl Med 1998;42:271–279.

    PubMed  CAS  Google Scholar 

  3. Samuel A, Paganelli G, Chiesa R, Sudati F, Calvitto M, Melissano G, et al. Detection of prosthetic vascular graft infection using avidin/indium-111-biotin scintigraphy. J Nucl Med 1996;37:55–61.

    PubMed  CAS  Google Scholar 

  4. Rusckowski M, Paganelli G, Hnatowich DJ, Magnani P, Virzi F, Fogarasi M, et al. Imaging osteomyelitis with streptavidin and indium-111-labeled biotin. J Nucl Med 1996;37:1655–1662.

    PubMed  CAS  Google Scholar 

  5. Lazzeri E, Pauwels EKJ, Erba PA, Volterrani D, Manca M, Bodei L, et al: Clinical feasibility of two-step streptavidin/In-111-biotin scintigraphy in patients with suspected vertebral osteomyelitis. Eur J Nucl Med Mol Imaging 2004;31:1505–1511.

    Article  PubMed  Google Scholar 

  6. Becker W, Goldenberg DM, Wolf F. The use of monoclonal-antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med 1994;24:142–153.

    Article  PubMed  CAS  Google Scholar 

  7. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998;39:2145–2152.

    PubMed  CAS  Google Scholar 

  8. De Winter F, Gemmel F, Van Laere K, De Winter O, Poffijn B, Dierckx RA, et al. 99(m)Tc-Ciprofloxacin planar and tomographic imaging for the diagnosis of infection in the postoperative spine: experience in 48 patients. Eur J Nucl Med Mol Imaging 2004;31:233–239.

    Article  PubMed  Google Scholar 

  9. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978;19:1154–1161.

    PubMed  CAS  Google Scholar 

  10. Nelson CA, Wang JQ, Leav I, Crane PD. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 1996;23:533–541.

    Article  PubMed  CAS  Google Scholar 

  11. Smith TAD. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000;57:170–178.

    Article  PubMed  CAS  Google Scholar 

  12. Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C. Positron emission tomography of 18FDG uptake in localized pulmonary inflammation. Acta Radiol Suppl 1991;376:148.

    PubMed  CAS  Google Scholar 

  13. Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C. In vivo measurement of neutrophil activity in experimental lung inflammation. Am J Respir Crit Care Med 1994;149:1635–1639.

    PubMed  CAS  Google Scholar 

  14. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiograph. J Nucl Med 1992;33:1972–1980.

    PubMed  CAS  Google Scholar 

  15. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–1306.

    PubMed  CAS  Google Scholar 

  16. Sugawara Y, Gutowski TD, Fisher SJ, Brown RS, Wahl RL. Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, Ga-67-citrate, and I-125-HSA. Eur J Nucl Med 1999;26:333–341.

    Article  PubMed  CAS  Google Scholar 

  17. Chakrabarti R, Jung CY, Lee TP, Liu HZ, Mookerjee BK. Changes in glucose-transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 1994;152:2660–2668.

    PubMed  CAS  Google Scholar 

  18. Gamelli RL, Liu H, He LK, Hofmann CA. Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukocyte Biol 1996;59:639–647.

    PubMed  CAS  Google Scholar 

  19. Sorbara LR, Maldarelli F, Chamoun G, Schilling B, Chokekijcahi S, Staudt L, et al. Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J Virol 1996;70:7275–7279.

    PubMed  CAS  Google Scholar 

  20. Lang CH, Bagby GJ, Dobrescu C, Nelson S, Spitzer JJ. Modulation of glucose metabolic response to endotoxin by granulocyte colony-stimulating factor. Am J Physiol 1992;263:R1122–R1129.

    PubMed  CAS  Google Scholar 

  21. Chang HR, Bistrian B. The role of cytokines in the catabolic consequences of infection and injury. J Parenter Enteral Nutr 1998;22:156–166.

    Article  CAS  Google Scholar 

  22. Yao WJ, Hoh CK, Hawkins RA, Glaspy JA, Weil JA, Lee SJ, et al. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 1995;36:794–799.

    PubMed  CAS  Google Scholar 

  23. deKleijn E, Telgt D, Laan R. Schnitzler’s syndrome presenting as fever of unknown origin (FUO): the role of cytokines in its systemic features. Neth J Med 1997;51:140–142.

    Article  CAS  Google Scholar 

  24. Tetta C, Mariano F, Buades J, Ronco C, Wratten ML, Camussi G. Relevance of platelet-activating factor in inflammation and sepsis: mechanisms and kinetics of removal in extracorporeal treatments. Am J Kidney Dis 1997;30:S57–S65.

    PubMed  CAS  Google Scholar 

  25. Zhuang HM, Lee JH, Pourdehnad M, Atochina O, Rossman MD, Alavi A. In vitro investigation of FDG uptake in human inflammatory cells. J Nucl Med 1999;40:198P (abstract).

    Google Scholar 

  26. Heelan BT, Osman S, Blyth A, Schnorr L, Jones T, George AJT. Use of 2-[F-18]fluoro-2-deoxyglucose as a potential agent in the prediction of graft rejection by positron emission tomography. Transplantation 1998;66:1101–1103.

    Article  PubMed  CAS  Google Scholar 

  27. Scharko AM, Perlman SB, Hinds PW, Hanson JM, Uno H, Pauza CD. Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci U S Am 1996;93:6425–6430.

    Article  CAS  Google Scholar 

  28. Tahara T, Ichiya Y, Kuwabara Y, Otsuka M, Miyake Y, Gunasekera R, et al. High [18]-fluorodeoxyglucose uptake in abdominal absecesses: a PET study. J Comput Assist Tomogr 1989;5:829–831.

    Article  Google Scholar 

  29. Meyer MA, Frey KA, Schwaiger M: Discordance between F-18 fluorodeoxyglucose uptake and contrast enhancement in a brain abscess. Clin Nucl Med 1993;18:682–684.

    PubMed  CAS  Google Scholar 

  30. Yen RF, Chen ML, Liu FY, Ko SC, Chang YL, Chieng PU, et al. False-positive 2-[F-18]-fluoro-2-deoxy-D-glucose positron emission tomography studies for evaluation of focal pulmonary abnormalities. J Formos Med Assoc 1998;97:642–645.

    PubMed  CAS  Google Scholar 

  31. Kaya Z, Kotzerke J, Keller F. FDG PET diagnosis of septic kidney in a renal transplant patient. Transplant Int 1999;12:156–156.

    Article  CAS  Google Scholar 

  32. Zimny M, Schroder W, Wolters S, Cremerius U, Rath W, Bull U. 18F-Fluorodeoxyglucose PET in ovarian carcinoma: methodology and preliminary results. Nuklearmedizin 1997;36:228–233.

    PubMed  CAS  Google Scholar 

  33. Schroder W, Zimny M, Rudlowski C, Bull U, Rath W. The role of F-18-fluoro-deoxyglucose positron emission tomography (F-18-FDG PET) in diagnosis of ovarian cancer. Int J Gynecol Cancer 1999;9:117–122.

    Article  PubMed  Google Scholar 

  34. Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 1998;25:259–264.

    Article  PubMed  CAS  Google Scholar 

  35. Jones HA, Sriskandan S, Peters AM, Pride NB, Krausz T, Boobis AR, et al. Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. Eur Respir J 1997;10:795–803.

    PubMed  CAS  Google Scholar 

  36. Kapucu LO, Meltzer CC, Townsend DW, Keenan RJ, Luketich JD. Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med 1998;39:1267–1269.

    PubMed  CAS  Google Scholar 

  37. Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994;35:1647–1649.

    PubMed  CAS  Google Scholar 

  38. Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 1994;21:297–305.

    Article  PubMed  CAS  Google Scholar 

  39. Zhuang H, Duarte PS, Pourdehand M, Shnier D, Alavi A. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 2000;25:281–284.

    Article  PubMed  CAS  Google Scholar 

  40. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993;188:487–490.

    PubMed  Google Scholar 

  41. Bakheet SMB, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med 1998;23:739.

    Article  PubMed  CAS  Google Scholar 

  42. Bakheet SMB, Powe J, Kandil A, Ezzat A, Rostom A, Amartey J. F-18FDG uptake in breast infection and inflammation. Clin Nucl Med 2000;25:100–103.

    Article  PubMed  CAS  Google Scholar 

  43. Tomas MB, Tronco GG, Karayalcin G, Palestro CJ. FDG uptake in infectious mononucleosis. Clin Posit Imaging 2000;3:176.

    Article  Google Scholar 

  44. Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, et al. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 1996;10:185–191.

    Article  PubMed  CAS  Google Scholar 

  45. Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med 2000;27:1538–1542.

    Article  PubMed  CAS  Google Scholar 

  46. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of (18)FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.

    Article  PubMed  CAS  Google Scholar 

  47. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308–1312.

    PubMed  CAS  Google Scholar 

  48. Herzog HR, Borner AR, Weckesser M, Muller-Gartner HW. Delayed scan time for FDG-PET in breast cancer. J Nucl Med 1999;40:140P (abstract).

    Google Scholar 

  49. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26:1345–1348.

    Article  PubMed  CAS  Google Scholar 

  50. Kubota K, Yamaguchi K, Itoh M, Ohira H, Yamada K, Fukuda H. Whole body FDG-PET for tumor detection should be imaged at 2 hr after injection, J Nucl Med 1999;40:141P (abstract).

    Google Scholar 

  51. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point F-18-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–875.

    PubMed  Google Scholar 

  52. Conrad GR, Sinha P. Narrow time-window dual-point F-18-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun 2003;24:1129–1137.

    Article  PubMed  CAS  Google Scholar 

  53. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al. F-18-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med 2003;44:540–548.

    PubMed  CAS  Google Scholar 

  54. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001;28:696–703.

    Article  PubMed  CAS  Google Scholar 

  55. Kubota K, Yokoyama J, Yamaguchi K, Ono S, Qureshy A, Itoh M, et al. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radio-chemotherapy: comparison with MRI/CT. Eur J Nucl Med Mol Imaging 2004;31:590–595.

    Article  PubMed  Google Scholar 

  56. Ma SY, See LC, Lai CH, Chou HH, Tsai CS, Ng KK, et al. Delayed F-18-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003;44:1775–1783.

    PubMed  Google Scholar 

  57. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Imamura M, Konishi J. Delayed FDG-PET scan for the differentiation between malignant and benign lesions. J Nucl Med 1999;40:247P (abstract).

    Google Scholar 

  58. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Kogire M, Doi R, et al. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer (Phila) 2000;89:2547–2554.

    Article  PubMed  CAS  Google Scholar 

  59. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. F-18-FDG PET of gliomas at delayed intervals: Improved distinction between tumor and normal gray matter. J Nucl Med 2004;45:1653–1659.

    PubMed  Google Scholar 

  60. Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-Dglucose in rodents with mammary carcinoma. Radiology 1992;183:643–647.

    PubMed  CAS  Google Scholar 

  61. Langen KJ, Braun U, Rota Kops E, Herzog H, Kuwert T, Nebeling B, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355–359.

    PubMed  CAS  Google Scholar 

  62. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer: a PET study. J Nucl Med 1993;34:1–6.

    PubMed  CAS  Google Scholar 

  63. Diederichs CG, Staib L, Glatting G, Beger HG, Reske SN. FDG PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 1998;39:1030–1033.

    PubMed  CAS  Google Scholar 

  64. Zhuang HM, Cortes-Blanco A, Pourdehnad M, Adam LE, Yamamoto AJ, Martinez-Lazaro R, et al. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun 2001;22:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  65. Maitra SR, Wojnar MM, Lang CH. Alterations in tissue glucose uptake during the hyperglycemic and hypoglycemic phases of sepsis. Shock 2000;13:379–385.

    PubMed  CAS  Google Scholar 

  66. Weisdorf DJ, Craddock PR, Jacob HS. Granulocytes utilize different energy sources for movement and phagocytosis. Inflammation 1982;6:245–256.

    Article  PubMed  CAS  Google Scholar 

  67. Martin T, Losa JE, Garciasalgado MJ, Perezarellano JL. The role of platelet-activating-factor (Paf) in interstitial pulmonary disease. J Invest Allergol Clin Immunol 1994;4:149–157.

    CAS  Google Scholar 

  68. Yue TL, Rabinovici R, Feuerstein G. Platelet-activating factor (PAF): a putative mediator in inflammatory tissue injury. Ad Exp Med Biol 1991;314:223–233.

    CAS  Google Scholar 

  69. Lang CH, Dobrescu C, Hargrove DM, Bagby GJ, Spitzer JJ. Plateletactivating factor-induced increases in glucose kinetics. Am J Physiol 1988;254:E193–E200.

    PubMed  CAS  Google Scholar 

  70. Ottlakan A. Role of platelet-activating factor in glucose uptake and utilization of different tissues. Eur Surg Res 1998;30:393–402.

    Article  PubMed  CAS  Google Scholar 

  71. Kolindou A, Liu Y, Ozker K, Krasnow AZ, Isitman AT, Hellman RS, et al. In-111 WBC imaging of osteomyelitis in patients with underlying bone scan abnormalities. Clin Nucl Med 1996;21:183–191.

    Article  PubMed  CAS  Google Scholar 

  72. Schauwecker DS, Braunstein EM, Wheat LJ. Diagnostic imaging of osteomyelitis. Infect Dis Clin N Am 1990;4:441–463.

    CAS  Google Scholar 

  73. Merkel KD, Brown ML, Dewanjee MK, Fitzgerald RH. Comparision of indium-labeled-leukocyte imaging with sequential technetiumgallium scanning in the diagnosis of low-grade musculoskeletal sepsis. J Bone Joint Surg 1985;67A:465–471.

    Google Scholar 

  74. Jacobson AF, Gilles CP, Cerqueira MD. Photopenic defects in marrow-containing skeleton on In-111 leukocyte scintigraphy: prevalence at sites suspected of osteomyelitis and as an incidental finding. Eur J Nucl Med 1992;19:858–864.

    Article  PubMed  CAS  Google Scholar 

  75. Reske SN, Karstens JH, Gloeckner W, Steinstrasser A, Schwarz A, Ammon J, et al. Radioimmunoimaging for diagnosis of bone-marrow involvement in breast cancer and malignant lymphoma. Lancet 1989;1:299–301.

    Article  PubMed  CAS  Google Scholar 

  76. Chung JK, Yeo J, Lee DS, Park S, Lee MC, Kim BK, et al. Bone marrow scintigraphy using technetium-99m-antigranulocyte antibody in hematologic disorders. J Nucl Med 1996;37:978–982.

    PubMed  CAS  Google Scholar 

  77. Palestro CJ, Kim CK, Swyer AJ, Vallabhajosula S, Goldsmith SJ. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 1991;32:1861–1865.

    PubMed  CAS  Google Scholar 

  78. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998;206:749–754.

    PubMed  CAS  Google Scholar 

  79. Meller J, Koster G, Liersch T, Siefker U, Lehmann K, Meyer I, et al. Chronic bacterial osteomyelitis: prospective comparison of F-18-FDG imaging with a dual-head coincidence camera and In-111-labelled autologous leucocyte scintigraphy. Eur J Nucl Med 2002;29:53–60.

    Article  CAS  Google Scholar 

  80. De Winter F, Van de Wiele C, Vogelaers D, Verdonk R, De Smet K, De Clercq D, et al. FDG PET is highly accurate in the diagnosis of chronic osteomyelitis in the central skeleton. J Nucl Med 2000;41:57 (abstract).

    Google Scholar 

  81. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 1998;25:1238–1243.

    Article  PubMed  CAS  Google Scholar 

  82. Meyer M, Gast T, Raja S, Hubner K. Increased F-18 FDG accumulation in an acute fracture. Clin Nucl Med 1994;19:13–14.

    PubMed  CAS  Google Scholar 

  83. Ravenel JG, Gordon LL, Pope TL, Reed CE. FDG-PET uptake in occult acute pelvic fracture. Skeletal Radiol 2004;33:99–101.

    Article  PubMed  Google Scholar 

  84. Zhuang H, Sam JW, Chacko TK, Duarte PS, Hickeson M, Feng Q, et al. Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging 2003;30:1096–1103.

    Article  PubMed  Google Scholar 

  85. Schmitz A, Risse JH, Textor J, Zander D, Biersack HJ, Palmedo H. FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporosis Int 2002;13:755–761.

    Article  Google Scholar 

  86. Koort JK, Makinen TJ, Knuuti J, Jalava J, Aro HT. Comparative F-18-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 2004;45:1406–1411.

    PubMed  Google Scholar 

  87. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. Am J Roentgenol 1992;1:9–18.

    Google Scholar 

  88. Hunter GA, Welsh RP, Cameron HU, Bailey WH. The results of revision of total hip arthroplasty. J Bone Joint Surg [Br] 1979;61B:419–421.

    Google Scholar 

  89. Maderazo EG, Judson S, Pasternak H. Late infections of total joint prostheses. A review and recommendation for prevention. Clin Orthop Relat Res 1988;229:131–142.

    Google Scholar 

  90. Fitzgerald RH. Diagnosis and management of the infected hipprosthesis. Orthopedics 1995;18:833–835.

    PubMed  Google Scholar 

  91. Bauer GCH, Lindberg L, Naverstein Y, Sjostrand LO. Radionuclide scintimetry in infected total hip arthroplasty. Acta Orthop Scand 1973;44:439–450.

    PubMed  CAS  Google Scholar 

  92. Kraemer WJ, Saplys R, Waddell JP, Morton J. Bone scan, gallium scan, and hip aspiration in the diagnosis of infected total hip arthroplasty. J Arthroplasty 1993;8:611–616.

    Article  PubMed  CAS  Google Scholar 

  93. Mulamba LAH, Ferrant A, Lencers N, deNaye P, Rombouts JJ, Vincent A. Indium-111-leukocyte scanning in the evaluation of painful hip arthroplasty. Acta Orthop Scand 1983;54:695–697.

    Article  PubMed  CAS  Google Scholar 

  94. Palestro CJ, Kim CK, Swyer AJ, Capozzi JD, Solomon RW, Goldsmith SJ. Total-hip arthroplasty: periprosthetic indium-111 labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection. J Nucl Med 1990;31:1950–1954.

    PubMed  CAS  Google Scholar 

  95. Palestro CJ, Roumanas P, Swyer AJ, Kim CK, Goldsmith SJ. Diagnosis of musculoskeletal infection using combined In-111 labeled leukocyte and Tc-99m SC marrow imaging. Clin Nucl Med 1992;17:269–273.

    Article  PubMed  CAS  Google Scholar 

  96. Scher DM, Pak K, Lonner JH, Finkel JE, Zuckerman JD, Di Cesare PE. The predictive value of indium-111 leukocyte scans in the diagnosis of infected total hip, knee, or resection arthroplasties. J Arthroplasty 2000;15:295–300.

    Article  PubMed  CAS  Google Scholar 

  97. De Winter F, Van de Wiele C, Verdonk R, Vogelaers D, De Smet K, De Bondt P, et al. FDF PET for the exclusion of infection in orthopedic prostheses. J Nucl Med 2000;41:1421p (abstract).

    Google Scholar 

  98. Zhuang H, Duarte PS, Pourdehnad M, Maes A, Van Acker F, Shnier D, et al. The promising role of F-18-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 2001;42:44–48.

    PubMed  CAS  Google Scholar 

  99. Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med 2000;27:524–528.

    Article  PubMed  CAS  Google Scholar 

  100. Schmitz A, Risse HJ, Kalicke T, Grunwald F, Schmitt O. FDG-PET for diagnosis and follow-up of inflammatory processes: first results from an orthopedic view. Z Orthop Grenzgeb 2000;138:407–412.

    Article  CAS  Google Scholar 

  101. Love C, Marwin SE, Krauss ES, Tomas MB, Palestro CJ. Diagnosing the infected joint replacement: prospective intraindividual comparison of In-111 labeled leukocyte/marrow and F-18 FDG imaging. J Nucl Med 2000;41:58P (abstract).

    Google Scholar 

  102. Love C, Sarkar SD, Durojaye AO, Tomas MB, Marwin SE, Palestro CJ. Diagnosing the infected joint replacement: a prospective comparison of F-18FDG, bone, gallium, and leukocyte/marrow scintigraphy. Radiology 2000;217:499 (abstract).

    Google Scholar 

  103. Love C, Marwin SE, Tomas MB, Krauss ES, Tronco GG, Bhargava KK, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection F-18-FDG and In-111-labeled leukocyte/Tc-99m-sulfur colloid marrow imaging. J Nucl Med 2004;45:1864–1871.

    PubMed  Google Scholar 

  104. Manthey N, Reinhard P, Moog F, Knesewitsch P, Hahn K, Tatsch K. The use of F-18 fluorodeoxyglucose positron emission tomography to differentiate between synovitis, loosening and infection of hip and knee prostheses. Nucl Med Commun 2002;23:645–653.

    Article  PubMed  CAS  Google Scholar 

  105. De Winter F, Van de Wiele C, De Clercq D, Vogelaers D, De Bondt P, Dierckx RA. Aseptic loosening of a knee prosthesis as imaged on FDG positron emission tomography. Clin Nucl Med 2000;25:923–923.

    Article  PubMed  Google Scholar 

  106. Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med 1998;39:1302–1305.

    PubMed  CAS  Google Scholar 

  107. Peters AM. The use of nuclear medicine in infections. Br J Radiol 1998;71:252–261.

    PubMed  CAS  Google Scholar 

  108. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997;38:1575–1583.

    PubMed  CAS  Google Scholar 

  109. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993;34:567–575.

    PubMed  CAS  Google Scholar 

  110. Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 1996;7:337.

    Article  PubMed  CAS  Google Scholar 

  111. Villringer K, Jager H, Dichgans M, Ziegler S, Poppinger J, Herz M, et al. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 1995;19:532–536.

    Article  PubMed  CAS  Google Scholar 

  112. Wallace M, Pyzalski R, Horejsh D, Brown C, Djavani M, Lu YC, et al. Whole body positron emission tomography imaging of activated lymphoid tissues during acute simian-human immunodeficiency virus 89.6PD infection in rhesus macaques. Virology 2000;274:255–261.

    Article  PubMed  CAS  Google Scholar 

  113. Peters AM. Nuclear medicine imaging in fever of unknown origin. Q J Nucl Med 1999;43:61.

    PubMed  CAS  Google Scholar 

  114. Kobayashi A, Shinozaki T, Shinjyo Y, Kato K, Oriuchi N, Watanabe H, et al. FDG PET in the clinical evaluation of sarcoidosis with bone lesions. Ann Nucl Med 2000;14:311–313.

    Article  PubMed  CAS  Google Scholar 

  115. Hara M, Goodman PC, Leder RA. FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr 1999;23:16–18.

    Article  PubMed  CAS  Google Scholar 

  116. Brodmann M, Lipp RW, Passath A, Seinost G, Pabst E, Pilger E. The role of 2-F-18-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis of giant cell arteritis of the temporal arteries. Rheumatology 2004;43:241–242.

    Article  PubMed  CAS  Google Scholar 

  117. Meller J, Grabbe E, Becker W, Vosshenrich R. Value of F-18FDG hybrid camera PET and MRI in early takayasu aortitis. Eur Radiol 2003;13:400–405.

    PubMed  CAS  Google Scholar 

  118. Helisch A, Bierbach H, Schreckenberger M, Bartenstein P. Large vessel vasculitis as a reason for fever of unknown origin (FUO): diagnosis and therapy monitoring with F-18-FDG PET. Nuklearmedizin 2003;42:N71–N72.

    Google Scholar 

  119. De Winter F, Petrovic M, Van de Wiele C, Vogelaers D, Afschrift M, Dierckx RA. Imaging of giant cell arteritis: evidence of splenic involvement using FDG positron emission tomography. Clin Nucl Med 2000;25:633–634.

    Article  PubMed  Google Scholar 

  120. Meller J, Strutz F, Siefker J, Schee A, Sahmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with F-18 FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30:730–736.

    Article  PubMed  CAS  Google Scholar 

  121. Engel-Bicik I, Seger R, Eich G, Willi UV, Steinert HC. Diagnostic and therapeutic impact of whole body PET with FDG in immunodeficient children and fever of unknown origin. Eur J Nucl Med 1999;26:OS58 (abstract).

    Google Scholar 

  122. Meller J, Altenvoerde G, Munzel U, Jauho A, Behe M, Gratz S, et al. Fever of unknown origin: prospective comparison of [F-18]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET. Eur J Nucl Med 2000;27:1617–1625.

    Article  PubMed  CAS  Google Scholar 

  123. Schmitz A, Kalicke T, Willkomm P, Grunwald F, Kandyba J, Schmitt O. Use of fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in assessing the process of tuberculous spondylitis. J Spinal Disord 2000;13:541–544.

    Article  PubMed  CAS  Google Scholar 

  124. Ozsahin H, von Planta M, Muller I, Steinert HC, Nadal D, Lauener R, et al. Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B. Blood 1998;92:2719.

    PubMed  CAS  Google Scholar 

  125. Franzius C, Biermann M, Hulskamp G, Frosch M, Roth J, Sciuk J, et al. Therapy monitoring in aspergillosis using F-18FDG positron emission tomography. Clin Nucl Med 2001;26:232–233.

    Article  PubMed  CAS  Google Scholar 

  126. Reuter S, Schirrmeister H, Kratzer W, Dreweck C, Reske SN, Kern P. Pericystic metabolic activity in alveolar echinococcosis: assessment and follow-up by positron emission tomography. Clin Infect Dis 1999;29:1157–1163.

    Article  PubMed  CAS  Google Scholar 

  127. Stumpe KDM, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med 2000;27:822–832.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhuang, H., Alavi, A. (2006). Evolving Role of FDG-PET Imaging in the Management of Patients with Suspected Infection and Inflammatory Disorders. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_20

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics