Skip to main content

Microbial Fuel Cells

  • Chapter
Fuel Cell Technology

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Cellular life exists at the interface between electrochemical extremes. The energy of most living cells depends on the transfer of electrons from intracellular, electrically reduced biochemicals to oxidized extracellular acceptors. For almost one hundred years investigators have tried to tap into these processes in microbes for electrical power generation. Efforts have been made to use microbes as complex catalysts to oxidize relatively inexpensive organic and inorganic substrates as fuels in compact spaces in microbial fuel cells (MFCs). However, natural selection does not favor microbial metabolism under such conditions. Evolution has shaped microbes to use their growth substrate efficiently to reproduce under changing environmental conditions. Consequently, they are not optimized for use in MFCs, where electrons derived from substrate oxidation go only to the anode and not to cell growth

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.5 References

  1. Aiba, S., and M. Matsuoka. 1979. Identificationof metabolic model: Citrate production from clucose by Candida lipolytica. Biotechnol Bioeng 21:1373–1386.

    Article  Google Scholar 

  2. Allen, R. M., and H. P. Bennetto. 1993. Microbial fuel cells: Electricity production from carbohydrates. App. Biochem. Biotechnol. 39/40:27–40.

    Article  Google Scholar 

  3. Bard, A. J., and L. R. Faulkner. 2001. Electrochemical methods: fundamentals and applications, 2nd ed. Wiley, New York.

    Google Scholar 

  4. Bennetto, H. P., J. L. Stirling, K. Tanaka, and C. A. Vega. 1983. Anodic reactions in microbial fuel cells. Biotechnol. Bioeng. 25:559–568.

    Article  Google Scholar 

  5. Bentley, A., A. Atkinson, J. Jezek, and D. M. Rawson. 2001. Whole cell biosensors—electrochemical and optical approaches to ecotoxicity testing. Toxicol. In Vitro 15:469–475.

    Article  Google Scholar 

  6. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485.

    Article  Google Scholar 

  7. Bond, D. R., and D. R. Lovley. 2003. Electricity production by Geobacter sulfur-reducens attached to electrodes. Appl. Environ. Microbiol. 69:1548–1555.

    Article  Google Scholar 

  8. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics 19:607–13.

    Article  Google Scholar 

  9. Chang, I. S., H. Moon, J. K. Jang, and B. H. Kim. 2004. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics: In Press, Corrected Proof.

    Google Scholar 

  10. Chaudhuri, S. K., and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol. 21:1229–1232.

    Article  Google Scholar 

  11. Choi, Y., E. Jung, S. Kim, and S. Jung. 2003. Membrane fluidity sensoring microbial fuel cell. Bioelectrochem. 59:121–127.

    Article  Google Scholar 

  12. Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11: 863–869.

    Google Scholar 

  13. Cohen, B. 1931. The bacterial culture as an electrical half-cell. J. Bacteriol. 21:18.

    Google Scholar 

  14. Delaney, G. M., H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. J. Chem. Technol. Biotechnol. 34B:13–27.

    Google Scholar 

  15. Edwards, J. S., R. U. Ibarra, and B. O. Palsson. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–30.

    Article  Google Scholar 

  16. Edwards, J. S., and B. O. Palsson. 2000. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–33.

    Article  Google Scholar 

  17. Gil, G.-C., I.-S. Chang, B. H. Kim, M. Kim, J.-K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors and Bioelectronics 18:327–334.

    Article  Google Scholar 

  18. Ibarra, R. U., J. S. Edwards, and B. O. Palsson. 2002. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–9.

    Article  Google Scholar 

  19. Ikeda, T., and K. Kano. 2001. An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J. Biosci. Bioeng. 92:9–18.

    Article  Google Scholar 

  20. Ikeda, T., T. Kurosaki, K. Takayama, K. Kano, and K. Miki. 1996. Measurements of oxidoreductase-like activity of intact bacterial cells by an amperometric method using a membrane-coated electrode. Anal. Chem. 68:192–198.

    Article  Google Scholar 

  21. Jang, J. K., T. H. Phama, I. S. Changa, K. H. Kanga, H. Moona, K. S. Chob, and B. H. Kim. 2004. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem. 39:1007–1012.

    Article  Google Scholar 

  22. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25:1357–61.

    Article  Google Scholar 

  23. Katz, E., A. N. Shipway, and I. Willner. 2003. Biochemical fuel cells. In A. Lamm (ed.), Handbook of Fuel Cells-Fundamentals, Technology and Applications, vol. Volume 1: Fundamentals and Survey of Systems. John Wiley & Sons, Ltd.

    Google Scholar 

  24. Katz, E., and I. Willner. 2003. A biofuel cell with electrochemically switchable and tunable power output. J. Amer. Chem. Soc. 125:6803–6813.

    Article  Google Scholar 

  25. Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25:541–545.

    Article  Google Scholar 

  26. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63:672–681.

    Article  Google Scholar 

  27. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enz. Microbial Technol. 30:145–152.

    Article  Google Scholar 

  28. Kim, N., Y. Choi, S. Jung, and S. Kim. 2000. Development of microbial fuel cells using Proteus vulgaris. Bull. Korean Chem. Soc. 21:44–48.

    Google Scholar 

  29. Kim, N., Y. Choi, S. Jung, and S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70:109–114.

    Article  Google Scholar 

  30. Kojima, H., and A. J. Bard. 1975. Determination of rate constants for the electroreduction of aromatic compounds and their correlation with homogeneous electron transfer rates. J. Amer. Chem. Soc. 97:6317–6324.

    Article  Google Scholar 

  31. Kosaric, N., and J. Velikonja. 1995. Liquid and gaseous fuels from biotechnology-challenge and opportunities. FEMS Microbiol. Rev. 16:111–142.

    Article  Google Scholar 

  32. Lee, S. A., Y. Choi, S. H. Jung, and S. Kim. 2002. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochem. 57:173–178.

    Article  Google Scholar 

  33. Liu, H., R. Ramnarayanan, and B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38:2281–2285.

    Article  Google Scholar 

  34. Lloyd, J. R., C. Leang, A. L. Hodges Myerson, M. V. Coppi, S. Cuifo, B. Methe, S. J. Sandler, and D. R. Lovley. 2003. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 369:153–161.

    Article  Google Scholar 

  35. Majewksi, R. A., and M. M. Domach. 1990. Simple constrained optimization view of acetate overflow in Escherichia coli. Biotechnol Bioeng 35:732–738.

    Article  Google Scholar 

  36. Melis, A., and T. Happe. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127:740–748.

    Article  Google Scholar 

  37. Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, D. Wu, M. Wu, N. Ward, M. J. Beanan, R. J. Dodson, R. Madupu, L. M. Brinkac, S. C. Daugherty, R. T. DeBoy, A. S. Durkin, M. Gwinn, J. F. Kolonay, S. A. Sullivan, D. H. Haft, S. J., T. M. Davidsen, N. Zafar, O. White, B. Tran, C. Romero, r. H. A. Forberge, J. Weidman, H. Khouri, T. V. Feldblyum, T. R. Utterback, S. E. Van Aken, D. R. Lovley, and C. M. Fraser. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969.

    Article  Google Scholar 

  38. Nath, K., and D. Das. 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65:520–529.

    Article  Google Scholar 

  39. Niessen, J., U. Schröder, M. Rosenbaum, and F. Scholz. 2004. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem. Commun. 6:571–575.

    Article  Google Scholar 

  40. Niessen, J., U. Schröder, and F. Scholz. 2004. Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch. Electrochem. Commun. 6:955–958.

    Article  Google Scholar 

  41. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with Neutral Red. Biotechnol. Lett. 22:1301–1304.

    Article  Google Scholar 

  42. Park, D. H., and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66:1292–1297.

    Article  Google Scholar 

  43. Park, D. H., and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59:58–61.

    Article  Google Scholar 

  44. Park, D. H., and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81:348–355.

    Article  Google Scholar 

  45. Pham, C. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H. Yi, and J. Chun. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223:129–34.

    Article  Google Scholar 

  46. Potter, M. C. 1911. Electrical effects accompanying the decomposition of organic compounds. Proc. Royal Soc. Lond. Series B 84:260–276.

    Article  Google Scholar 

  47. Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70:5373–5382.

    Article  Google Scholar 

  48. Rabaey, K., G. Lissens, S. D. Siciliano, and W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25:1531–1535.

    Article  Google Scholar 

  49. Ramakrishna, R., J. S. Edwards, A. McCulloch, and B. O. Palsson. 2001. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol 280:R695–704.

    Google Scholar 

  50. Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B:3–12.

    Google Scholar 

  51. Sasaki, S., and I. Karube. 1999. The development of microfabricated biocatalytic fuel cells. TIBTech 17:50–52.

    Google Scholar 

  52. Schilling, C. H., M. W. Covert, I. Famili, G. M. Church, J. S. Edwards, and B. O. Palsson. 2002. Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–93.

    Article  Google Scholar 

  53. Scholz, F., and U. Schroder. 2003. Bacterial batteries. Nature Biotechnol. 21:1151–1152.

    Article  Google Scholar 

  54. Schröder, U., J. Nießen, and F. Scholz. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42:2880–2883.

    Article  Google Scholar 

  55. Sell, D. 2001. Bioelectrochemical Fuel Cells, Biotechnology, vol. 10 Special Processes. Wiley-VCH.

    Google Scholar 

  56. Sell, D., P. Krämer, and G. Kreysa. 1989. Use of oxygen gas diffusion cathode and a three-dimensional packed bed anod in a bioelectrochemical fuel cell. Appl. Microbiol. Biotechnol. 31:211–213.

    Article  Google Scholar 

  57. Sisler, F. D. 1962. Electrical energy from microbiological processes. J. Wash. Acad. Sci. 52:181–187.

    Google Scholar 

  58. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego.

    Google Scholar 

  59. Takayama, K., T. Kurosaki, T. Ikeda, and T. Nagasawa. 1995. Bioelectrocatalytic hydroxylation of nicotinic acid at an electrode modified with immobilized bacterial cells of Pseudomonas fluorescens in the presence of electron transfer mediators. J. Electroanalyt. Chem. 381:47–53.

    Article  Google Scholar 

  60. Tender, L. M., C. E. Reimers, H. A. r. Stecher, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20:821–825.

    Google Scholar 

  61. Tsujimura, S., A. Wadano, K. Kano, and T. Ikeda. 2001. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enz. Microb. Technol. 29:225–231.

    Article  Google Scholar 

  62. Varma, A., and B. O. Palsson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60:3724–3731.

    Google Scholar 

  63. Weiland, P. 2003. Production and energetic use of biogas from energy crops and wastes in Germany. Appl. Biochem. Biotechnol. 109:263–274.

    Article  Google Scholar 

  64. Wilkinson, S. 2000. “Gastrobots”-Benefits and challenges of microbial fuel cells in food powered robot applications. Autonomous Robots 9:99–111.

    Article  MathSciNet  Google Scholar 

  65. Willner, I., and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39:1180–1218.

    Article  Google Scholar 

  66. Wilson, B. J. 1963. Experiments with a magnesium seawater cell incorporating a bacterial colonized cathode. NRL Report 5998.

    Google Scholar 

  67. Yagishita, T., S. Sawayama, K. I. Tsukahara, and T. Ogi. 1998. Performance of photosynthetic electrochemical cells using Immobilized Anabaena variabilis M-3 in discharge/culture cycles. J. Ferment. Bioeng. 85:546–549.

    Article  Google Scholar 

  68. Yoshida, N., K. Yano, T. Morita, S. J. McNiven, H. Nakamura, and I. Karube. 2000. A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst 125:2280–2284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Noll, K. (2006). Microbial Fuel Cells. In: Sammes, N. (eds) Fuel Cell Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-207-1_9

Download citation

  • DOI: https://doi.org/10.1007/1-84628-207-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-974-6

  • Online ISBN: 978-1-84628-207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics