Skip to main content

Extremophiles

  • Chapter
  • First Online:
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Madigan M. T., Martinko J. M. and Parker J. (2002). Brock Biology of Microorganisms, 10th edn. New Jersey, Prentice-Hall, Inc.

    Google Scholar 

Specialised

  • Amann R. I., Ludwig W. and Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    Google Scholar 

  • Barns S. M., Delwiche C. F., Palmer J. D., Dawson S. C., Hershberger K. L. and Pace N. R. (1996). Phylogenetic perspective on microbial life in hydrothermal ecosystems, past and present. Ciba Found Symp. 202, 24–32; discussion 32–39.

    Google Scholar 

  • Blöchl E., Rachel R., Burgraff S., Hafenbradl D., Jannasch H. W. and Stetter K. O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113. Extremophiles 1, 14–21.

    Google Scholar 

  • Boynton W. V., Feldman W. C., Squyres S. W., Prettyman T. H., Bruckner J., Evans L. G., Reedy R. C., Starr R., Arnold J. R., Drake D. M., Englert P. A., Metzger A. E., Mitrofanov I., Trombka J. I., D'Uston C., Wanke H., Gasnault O., Hamara D. K., Janes D. M., Marcialis R. L., Maurice S., Mikheeva I., Taylor G. J., Tokar R. and Shinohara C. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85.

    Google Scholar 

  • Brasier M. D., Green O. R., Jephcoat A. P., Kleppe A. K., Van Kranendonk M. J., Lindsay J. F., Steele A. and Grassineau N. V. (2002). Questioning the evidence for Earth's oldest fossils. Nature 416, 76–81.

    Google Scholar 

  • Brock T. D., Brock K. M., Belly R. T. and Weiss R. L. (1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 84, 54–68.

    Google Scholar 

  • Brock T. D. and Freeze H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297.

    Google Scholar 

  • Brown J. R. and Doolittle W. F. (1997). Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502.

    Google Scholar 

  • Brown J. R., Douady C. J., Italia M. J., Marshall W. E. and Stanhope M. J. (2001). Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281–285.

    Google Scholar 

  • Buchalo A. S., Nevo E., Wasser S. P., Oren A. and Molitoris H. P. (1998). Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc. R. Soc. Lond. B Biol. Sci. 265, 1461–1465.

    Google Scholar 

  • Burggraf S., Stetter K. O., Rouviere P. and Woese C. R. (1991). Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14, 346–351.

    Google Scholar 

  • Carr M. H., Belton M. J., Chapman C. R., Davies M. E., Geissler P., Greenberg R., McEwen A. S., Tufts B. R., Greeley R., Sullivan R., Head J. W., Pappalardo R. T., Klaasen K. P., Johnson T. V., Kaufman J., Senske D., Moore J., Neukum G., Schubert G., Burns J. A., Thomas P. and Veverka J. (1998). Evidence for a subsurface ocean on Europa. Nature 391, 363–365.

    Google Scholar 

  • Chapelle F. H., K, O. N., Bradley P. M., Methe B. A., Ciufo S. A., Knobel L. L. and Lovley D. R. (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315.

    Google Scholar 

  • Deming J. W. (1998). Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9, 283–287.

    Google Scholar 

  • Farlow, W. G. (1880). On the nature of the peculiar reddening of salted codfish during the summer season. U.S. Commission of Fish and Fisheries, pp. 969–974.

    Google Scholar 

  • Fish S. A., Shepherd T. J., McGenity T. J. and Grant W. D. (2002). Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417, 432–436.

    Google Scholar 

  • Fisk M. R., Giovannoni S. J. and Thorseth I. H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281, 978–980.

    Google Scholar 

  • Forsythe R. D. and Zimbelman J. R. (1995). A case for ancient evaporite basins on Mars. J. Geophys. Res. 100, 5553–5563.

    Google Scholar 

  • Forterre P. and Philippe H. (1999). Where is the root of the universal tree of life? Bioessays 21, 871–879.

    Google Scholar 

  • Furnes H., Muehlenbachs K., Tumyr O., Torsvik T. and Thorseth I. H. (1999). Depth of active bio-alteration in the ocean crust: Costa Rica Rift (Hole 504B). Terra Nova 11, 228–233.

    Google Scholar 

  • Grant W. D., Gemmell R. T. and McGenity T. J. (1998). Halobacteria: the evidence for longevity. Extremophiles 2, 279–287.

    Google Scholar 

  • Henley R. W. (1996). Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems. Ciba Found. Symp. 202, 61–76; discussion 76–82.

    Google Scholar 

  • Horikoshi K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63, 735–750, table of contents.

    Google Scholar 

  • Hough D. W. and Danson M. J. (1999). Extremozymes. Curr. Opin. Chem. Biol. 3, 39–46.

    Google Scholar 

  • Hugenholtz P., Pitulle C., Hershberger K. L. and Pace N. R. (1998). Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376.

    Google Scholar 

  • Kashefi K. and Lovley D. R. (2003). Extending the upper temperature limit for life. Science 301, 934.

    Google Scholar 

  • Kerr R. A. (2000). Planetary science. Buried channels may have fed Mars ocean. Science 287, 1727–1728.

    Google Scholar 

  • Kivelson M. G., Khurana K. K., Russell C. T., Volwerk M., Walker R. J. and Zimmer C. (2000). Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289, 1340–1343.

    Google Scholar 

  • Knauth L. P. (1992). Origin and diagenesis of cherts: An isotopic perspective. In Isotopic signatures and sedimentary records, pp. 123–152. Edited by N. Clauer and S. Chanduri. Berlin: Springer-Verlag.

    Google Scholar 

  • Kochkina G. A., Ivanushkina N. E., Karasev S. G., Gavrish E., Gurina L. V., Evtushenko L. I., Spirina E. V., Vorob'eva E. A., Gilichinskii D. A. and Ozerskaia S. M. (2001). Micromycetes and actinobacteria under conditions of many years of natural cryopreservation. Mikrobiologiia 70, 412–420.

    Google Scholar 

  • Lanoil B. D., Sassen R., La Duc M. T., Sweet S. T. and Nealson K. H. (2001). Bacteria and archaea physically associated with gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 67, 5143–5153.

    Google Scholar 

  • Lazcano A. and Miller S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85, 793–798.

    Google Scholar 

  • Lopez-Archilla A. I., Marin I. and Amils R. (2001). Microbial community composition and ecology of an acidic aquatic environment: the tinto river, Spain. Microb. Ecol. 41, 20–35.

    Google Scholar 

  • Madigan M. T., Martinko J. M. and Parker J. (2002). Brock Biology of Microorganisms, 10th edn. New Jersey: Prentice-Hall, Inc.

    Google Scholar 

  • Miller S. (1953). A production of amino acids undert possible primitive Earth conditions. Science 117, 528–529.

    Google Scholar 

  • Muliukin A. L., Sorokin V. V., Vorob'eva E. A., Suzina N. E., Duda V. I., Gal'chenko V. F. and El'-Registan G. I. (2002). Detection of microorganisms in the environment and the preliminary appraisal of their physiological state by X-ray microanalysis. Mikrobiologiia 71, 836–848.

    Google Scholar 

  • Newsom H. E., Hagerty J. J. and Thorsos I. E. (2001). Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1, 71–88.

    Google Scholar 

  • Nisbet E. G. and Sleep N. H. (2001). The habitat and nature of early life. Nature 409, 1083–1091.

    Google Scholar 

  • Oren A. (1994). The ecology of extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415–440.

    Google Scholar 

  • Oren A. (1999). Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348.

    Google Scholar 

  • Pace N. R. (1991). Origin of life–facing up to the physical setting. Cell 65, 531–533.

    Google Scholar 

  • Pace N. R. (1997). A molecular view of microbial diversity and the biosphere. Science 276, 734–740.

    Google Scholar 

  • Paerl H. W., Pinckney J. L. and Steppe T. F. (2000). Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2, 11–26.

    Google Scholar 

  • Pedersen K. (2000). Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 9–16.

    Google Scholar 

  • Rothschild L. J., Giver L. J., White M. R. and Mancinelli R. L. (1994). Metabolic activity of microorganisms in gypsum-halite crusts. J. Phycol. 30, 431–438.

    Google Scholar 

  • Rothschild L. J. and Mancinelli R. L. (2001). Life in extreme environments. Nature 409, 1092–1101.

    Google Scholar 

  • Schlesinger G. and Miller S. (1983). Prebiotic synthesis in atmospheres containing CH4, CO and CO2. I. Amino acids. J. Mol. Evol. 19, 376–382.

    Google Scholar 

  • Schopf J. W., Kudryavtsev A. B., Agresti D. G., Wdowiak T. J. and Czaja A. D. (2002). Laser–Raman imagery of Earth's earliest fossils. Nature 416, 73–76.

    Google Scholar 

  • Shi T., Reeves R. H., Gilichinsky D. A. and Friedmann E. I. (1997). Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb. Ecol. 33, 169–179.

    Google Scholar 

  • Siegert M. J., Ellis-Evans J. C., Tranter M., Mayer C., Petit J. R., Salamatin A. and Priscu J. C. (2001). Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–609.

    Google Scholar 

  • Sterflinger K. (1998). Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74, 271–281.

    Google Scholar 

  • Stetter K.O. (1989) Extremely thermophilic chemolithoautotrophic Archaebacteria. In H.G. Schlegel and B. Bowien (eds.), Extremely Thermophilic Chemolithoautotrophic Archaebacteria. Springer-Verlag, Berlin, pp. 167–176.

    Google Scholar 

  • Stetter K. O., Huber R., Blöchl E., Kurr M., Eden R. D., Fiedler M., Cash H. and Vance I. (1993). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.

    Google Scholar 

  • Stetter K. O. (1996). Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158.

    Google Scholar 

  • Summit M. and Baross J. A. (2001). A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl. Acad. Sci. USA 98, 2158–2163.

    Google Scholar 

  • Summons R. (1999). Molecular probing of deep secrets. Nature 398, 752–753.

    Google Scholar 

  • Takami H., Inoue A., Fuji F. and Horikoshi K. (1997). Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152, 279–285.

    Google Scholar 

  • Wächtershäusser G. (1988). Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol. 10, 207–210.

    Google Scholar 

  • Weiss B. P., Yung Y. L. and Nealson K. H. (2000). Atmospheric energy for subsurface life on Mars? Proc. Natl. Acad. Sci. USA 97, 1395–1399.

    Google Scholar 

  • Wilansky B. (1936). Life in the Dead Sea. Nature 138, 467.

    Google Scholar 

  • Woese C. R. (1987). Bacterial evolution. Microbiol. Rev. 51, 221–271.

    Google Scholar 

  • Woese C. R. and Fox G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090.

    Google Scholar 

  • Woese C. R., Kandler O. and Wheelis M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579.

    Google Scholar 

  • Zuckerkandl E. and Pauling L. (1965). Molecules as documents of evolutionary history. J Theor. Biol. 8, 357–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

López-García, P. (2005). Extremophiles. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_20

Download citation

Publish with us

Policies and ethics