Skip to main content

Regular and Chaotic Motion in Hamiltonian Systems

  • Chapter
  • First Online:
Chaos and Stability in Planetary Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 683))

  • 561 Accesses

Abstract

All laws that describe the time evolution of a continuous system are given in the form of differential equations, ordinary (if the law involves one independent variable) or partial (if the law involves two or more independent variables). Historically the first law of this type was Newton's second law of motion. Since then Dynamics, as it is customary to name the branch of Mechanics that studies the motion of a body as the result of a force acting on it, has become the “typical„ case that comes into one's mind when a system of ordinary differential equation is given, although this system might as well describe any other system, e.g. physical, chemical, biological, financial etc. In particular the study of “conservative„ dynamical systems, i.e. systems of ordinary differential equations that originate from a time-independent Hamiltonian function, has become a thoroughly developed area, because of the fact that mechanical energy is very often conserved, although many other physical phenomena, beyond motion, can be described by Hamiltonian systems as well. In what follows we will restrict ourselves exactly to the study of Hamiltonian systems, as typical dynamical systems that find applications in many scientific disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.V. Anosov: Sov. Math. Dokl. 3, 1068 (1962)

    MATH  Google Scholar 

  2. D.V. Anosov: Sov. Math. Dokl. 4, 1153 (1963)

    MATH  Google Scholar 

  3. V.I. Arnold: Mathematical Methods of Classical Mechanics (Springer, Berlin, 1989)

    Google Scholar 

  4. V.I. Arnold and A. Avez: Ergodic problems of Classical Mechanics (Benjamin, New York, 1968)

    Google Scholar 

  5. Benettin G. Benettin, L. Galgani, A. Giorgilli and J.M. Strelcyn: Meccanica, March, 21 (1980)

    Google Scholar 

  6. Berry M.V. Berry: Regular and irregular motion. In: Topics in nonlinear dynamics, vol 46, ed by S. Jorna (AIP, New York, 1978) pp. 16-120

    Google Scholar 

  7. B.V. Chirikov: Sov. Phys. Dokl. 4, 390 (1959)

    MATH  MathSciNet  ADS  Google Scholar 

  8. B.V. Chirikov: Phys. Rep. 52, 265, (1979)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Contopoulos: Bull. Astron. 3e ser. 2, Fasc. 1, 223 (1967)

    Google Scholar 

  10. G. Contopoulos: Order and Chaos in Dynamical Astronomy (Springer, Berlin, 2002)

    Google Scholar 

  11. J. Ford, S.D. Stoddard and J.S. Turner: Progr. Theoret. Phys. 50, 1547 (1973)

    Article  ADS  Google Scholar 

  12. J. Ford: The Statistical Mechanics of Classical Analytical Dynamics. In: Fundamental Problems in Statistical Mechanics}, vol 3, ed by E.D.G. Cohen (North Holland, Netherlands, 1975) pp. 215-255

    Google Scholar 

  13. J. Ford: A Picture Book in Stochasticity. In: Topics in nonlinear dynamics}, vol 46, ed by S. Jorna (AIP, New York, 1978), pp. 121-146

    Google Scholar 

  14. Froeschle C. Froeschlé and J.P Scheidecker: Astrophys. Space Sci. 25, 373, 1973

    Article  ADS  MATH  Google Scholar 

  15. Greene J. Greene: Ann. N.Y. Acad. Sci. 357, 80 (1980)

    Article  MATH  ADS  Google Scholar 

  16. Gutzwiller Gutzwiller, M.C., Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990)

    Google Scholar 

  17. Henon M. Hénon and C. Heiles: AJ 69, 73 (1964)

    Article  ADS  Google Scholar 

  18. J. Klafter, M.F. Shlesinger and G. Zumofen: Physics Today 49, 33 (1996)

    Article  Google Scholar 

  19. J. Klafter, M.F. Shlesinger and G. Zumofen: Physics Today 55, 48 (2001)

    Google Scholar 

  20. A.N. Kolmogorov: Dokl. Akad. Nauk SSSR 124, 754 (1959)

    MATH  MathSciNet  Google Scholar 

  21. Lichtenberg A.J. Lichtenberg M.A. and Lieberman: Regular and Chaotic Dynamics (Springer, Berlin, 1992)

    Google Scholar 

  22. Oseledec V.I. Oseledec: Trans. Moscow Math. Soc. 19, 197 (1968)

    MATH  MathSciNet  Google Scholar 

  23. Ott E. Ott: Chaos in Dynamical Systems (Cambridge University Press) 1993

    Google Scholar 

  24. Ya.B. Pesin: Russ. Math. Surveys 32, 55 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Ya.G. Sinai: Sov. Math. Dokl. 4, 1818, (1963)

    MathSciNet  Google Scholar 

  26. K. Tsiganis, H. Varvoglis and J. Hadjidemetriou: Icarus 146, 240 (2000)

    Article  ADS  Google Scholar 

  27. H. Varvoglis, Ch. Vozikis and K. Wodnar: CMDA 89, 343, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zaslavsky G.M. Zaslavsky: Chaos in Dynamic Systems, 2nd edn (Harwood, London, 1987) pp 6–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Dvorak Florian Freistetter Jürgen Kurths

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Varvoglis, H. Regular and Chaotic Motion in Hamiltonian Systems. In: Dvorak, R., Freistetter, F., Kurths, J. (eds) Chaos and Stability in Planetary Systems. Lecture Notes in Physics, vol 683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10978337_2

Download citation

  • DOI: https://doi.org/10.1007/10978337_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28208-2

  • Online ISBN: 978-3-540-34556-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics