Skip to main content

Abstract

The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DF (1987) Review: tissue-biomaterial interactions. J Mater Sci 22:3421–3445

    Article  CAS  Google Scholar 

  2. Brown SA, Merritt K (1981) Fretting corrosion in saline and serum. J Biomed Mater Res 15:479–488

    Article  CAS  Google Scholar 

  3. Williams DF, Clark GCF (1982) The corrosion of pure cobalt in physiological media. J Mater Sci 17:1675–1682

    Article  CAS  Google Scholar 

  4. Williams DF (ed) (1985) Critical review of biocompatibility. CRC, Boco Raton

    Google Scholar 

  5. Konttinen YT, Zhao D, Beklen A, Ma G, Takagi M, Kivelä-Rajamäki M, Ashammakhi N, Santavirta S (2005) The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res 430:28–38

    Article  Google Scholar 

  6. Arshady R (2003) Polymeric biomaterials: chemistry, concepts, criteria. In: Arshady R (ed) Introduction to polymeric biomaterials: the polymeric biomaterials series. Citus Books, London

    Google Scholar 

  7. Ratner BA, Horbett TA (2004) Some background concepts. In: Ratner BD, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, San Diego

    Google Scholar 

  8. Schoen FJ, Anderson JM (2004) Host response to biomaterials and their evaluation. In: Ratner BD, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, San Diego

    Google Scholar 

  9. Törmälä P, Laiho J, Helevirta P, Rokkanen P, Vainionpää S, Böstman O, Kilpikari J (1986) Resorbable surgical devices. In: Proceedings of the fifth international conference on polymers in medicine and surgery, Leeuwenhost Congress Centre, The Netherlands, pp 16/1–16/6

    Google Scholar 

  10. Törmälä P, Pohjonen T, Rokkanen P (1998) Bioabsorbable polymers: materials technology and surgical applications. Proc Instn Mech Engrs 212:101–111

    Google Scholar 

  11. Schedl R, Fasol P (1979) Achilles tendon repair with the plantaris tendon compared with repair using polyglycol threads. J Trauma 19:189–194

    Article  CAS  Google Scholar 

  12. Schmitt EE, Polistina RA (1975) Surgical dressing of absorbable polymers. US Pat. 3875937

    Google Scholar 

  13. Bowald S, Busch C, Erikson I (1978) Arterial grafting with polyglactin mesh in pigs. Lancet 311:153

    Article  Google Scholar 

  14. Bowald S, Busch C, Erikson I (1979) Arterial regeneration following polyglactin 910 suture mesh grafting. Surgery 86:722–729

    CAS  Google Scholar 

  15. Audell L, Bowald S, Busch C, Erikson I (1980) Polyglactin mesh grafting of the pig aorta. Acta Chir Scand 146:97–99

    CAS  Google Scholar 

  16. Greisler HP, Kim DU, Price JB, Voorhes AB (1985) Arterial regenerative activity after prosthetic implantation. Arch Surg 120:315–323

    Article  CAS  Google Scholar 

  17. Delany HM, Solanki B, Driscoll WB (1985) Use of absorbable mesh for splenorrhaphy and pelvic peritoneum reconstruction. Contemp Surg 27:11–15

    Google Scholar 

  18. Rokkanen P, Böstman O, Vianionpää S, Vihtonen K, Törmälä P, Laiho J, Kilpikari J, Tamminmäki M (1985) Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet 1:1422–1424

    Article  CAS  Google Scholar 

  19. Yamamuro T, Matsusue Y, Uchida A, Shimada K, Shimozaki E, Kitaoka K (1994) Bioabsorbable osteosynthetic implants of ultra-high strength poly-l-lactide: a clinical study. Int Orthop 18:332–340

    Article  CAS  Google Scholar 

  20. Pelto-Vasenius K, Hirvensalo E, Vasenius J, Partio EK, Böstman O, Rokkanen P (1998) Redisplacement after ankle osteosynthesis with absorbable implants. Arch Orthop Trauma Surg 117:159–162

    Article  CAS  Google Scholar 

  21. Wolff J (2010) The classic: on the theory of fracture healing. Clin Orthop Relat Res 468:1052–1055

    Article  Google Scholar 

  22. Landry M, Fleisch H (1964) The influence of immobilization on bone formation as evaluated by osseous incorporation of tetracycline. J Bone Joint Surg 46:764–771

    CAS  Google Scholar 

  23. Williams DF, Gore LF, Clark GCF (1983) Quantitative microradiography of cortical bone in disuse osteoporosis following fracture fixation. Biomaterials 4:285–288

    Article  CAS  Google Scholar 

  24. Uthoff HK, Dubuc FL (1971) Bone structure changes in the dog under rigid internal fixation. Clin Orthop 81:165–170

    Article  Google Scholar 

  25. Woo SLY, Akeson WH, Courts RD, Rutherford L, Doty D, Jemmott GF, Amiel D (1976) A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Joint Surg Am 58:190–195

    Google Scholar 

  26. Song G, Song S (2007) A possible biodegradable magnesium implant material. Adv Mater Eng 9:298–302

    Article  CAS  Google Scholar 

  27. Williams DF (2009) Leading opinion: on the nature of biomaterials. Biomaterials 30:5897–5909

    Article  CAS  Google Scholar 

  28. Williams DF (1981) Biocompatibility of clinical implant materials. CRC, Boca Raton

    Google Scholar 

  29. Williams D (2006) New interests in magnesium. Med Device Technol 17:9–10

    Google Scholar 

  30. Jacobs JJ, Gilbert JL, Urban RM (1998) Current concepts review—corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282

    CAS  Google Scholar 

  31. Williams DF (ed) (1983) Biocompatibility of orthopaedic implant materials. CRC, Boca Raton

    Google Scholar 

  32. Brown SA, Merritt K (1981) Fretting corrosion in saline and serum. J Biomed Mater Res 15:479–488

    Article  CAS  Google Scholar 

  33. Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83:428–436

    Article  Google Scholar 

  34. Jonas L, Fulda G, Radeck R (2001) Biodegradation of titanium implants after long time insertion used for the treatment of fractured upper and lower jaws through osteosynthesis: elemental analysis by electron microscopy and EDX or EELS. Ultrastruct Pathol 25:375–383

    Article  CAS  Google Scholar 

  35. Murray CJL, Lopez AD (1996) The global burden of disease. World Health Organization, Geneva

    Google Scholar 

  36. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D (2010) Acta Biomater 6:1843–1851

    Article  CAS  Google Scholar 

  37. Mueller PP, May T, Perz A, Hauser H, Peuster M (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials 27:2193–2200

    Article  CAS  Google Scholar 

  38. Lambotte MA (1932) L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse. Societé nationale de chirurgie 1325–1334

    Google Scholar 

  39. Staiger M, Pietak A, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  40. Cardarelli F (2000) Less common non-ferrous metals. Materials handbook. Springer, London, pp 99–107

    Google Scholar 

  41. Heublein B, Rohde R, Kaese V, Niemeyer M, HartungW, Haveric A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656

    Article  CAS  Google Scholar 

  42. Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28:1689–1710

    Article  CAS  Google Scholar 

  43. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Google Scholar 

  44. Erne P, Schier M, Resink TJ (2006) The road to bioabsorbable stents: reaching clinical reality. Cardiovasc Intervent Radiol 29:11–16

    Article  Google Scholar 

  45. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30:484–498

    Article  CAS  Google Scholar 

  46. Peuster M, Fink C, von Schnakenburg C, Hausdorf G (2002) Dissolution of tungsten coils does not produce systemic toxicity, but leads to elevated levels of tungsten in the serum and recanalization of the previously occluded vessel. Cardiol Young 12:229–235

    Article  Google Scholar 

  47. Peuster M, Fink C, von Schnakenburg C (2003) Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 24:4057–4061

    Article  CAS  Google Scholar 

  48. Hench LL, Etheridge EC (1982) Biomaterials: an interfacial approach, Academic, New York

    Google Scholar 

  49. Davidge RW (1984) Structural degradation of ceramics. Biomaterials 5:37–41

    Article  CAS  Google Scholar 

  50. Klein CP, Driessen AA, de Groot K, van den Hoof A (1983) Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res 17:769–784

    Article  CAS  Google Scholar 

  51. Klein CP, de Groot K, Driessen AA, van der Lubbe HB (1985) Interaction of biodegradable beta-whitlockite ceramics with bone tissue: an in vivo study. Biomaterials 6:189–192

    Article  CAS  Google Scholar 

  52. Winkler T, Hoenig E, Huber G, Janssen R, Fritsch D, Gildenhaar R, Berger G, Morlock MM, Schilling AF (2010) Osteoclastic bioresorption of biomaterials: two- and three-dimensional imaging and quantification. Int J Artif Organs 33:198–203

    CAS  Google Scholar 

  53. Winkler T, Hoenig E, Gildenhaar R, Berger G, Fritsch D, Janssen R, Morlock MM, Schilling AF (2010) Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities. Acta Biomater 6:4127–4135

    Google Scholar 

  54. LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88

    Article  CAS  Google Scholar 

  55. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63:408–412

    Article  CAS  Google Scholar 

  56. Lange T, Schilling AF, Peters F, Mujas J, Wicklein D, Amling M (2011) Size dependent induction of proinflammatory cytokines and cytotoxicity of particulate beta-tricalciumphosphate in vitro. Biomaterials 32:4067–4075

    Article  CAS  Google Scholar 

  57. Lange T, Schilling AF, Peters F, Haag F, Morlock MM, Rueger JM, Amling M (2009) Proinflammatory and osteoclastogenic effects of beta-tricalciumphosphate and hydroxyapatite particles on human mononuclear cells in vitro. Biomaterials 30:5312–5318

    Article  CAS  Google Scholar 

  58. Klein CP, de Groot K, Driessen AA, Ven der Lubbe HBM (1985) Interaction of biodegradable β-whitlockite with bone tissue: an in vivo study. Biomaterials 6:189–192

    Article  CAS  Google Scholar 

  59. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    Article  CAS  Google Scholar 

  60. Smith R, Williams DF (1985) The degradation of a synthetic polyester by a lysomal enzyme. J Mater Sci Lett 4:547–549

    Article  CAS  Google Scholar 

  61. Smith R, Oliver C, Williams DF (1987) The enzymatic degradation of polymers in vitro. J Biomed Mater Res 21:991–1003

    Article  CAS  Google Scholar 

  62. Marchant RE, Miller KM, Anderson JM (1984) In vivo biocompatibility studies. V. In vivo leukocyte interactions with biomer. J Biomed Mater Res 18:1169–1190

    Article  CAS  Google Scholar 

  63. Williams DF, Smith R, Oliver C (1986) The degradation of 14C-labelled polymers by enzymes. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performance of biomaterials. Elsevier, Amsterdam

    Google Scholar 

  64. Pişkin E (1994) Review: biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6:775–795

    Google Scholar 

  65. Herrmann JB, Kelly RJ, Higgins GA (1970) Polyglycolic acid sutures. Arch Surg 100:486–490

    Article  CAS  Google Scholar 

  66. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  Google Scholar 

  67. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830

    Article  CAS  Google Scholar 

  68. Rokkanen PU, Böstman O, Hirvensalo E, Mäkelä EA, Partio EK, Pätiälä H, Vainionpää SI, Vihtonen K, Törmälä P (2000) Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21:2607–2613

    Article  CAS  Google Scholar 

  69. Pihlajamäki H, Böstman O, Hirvensalo E, Törmälä P, Rokkanen P (1992) Absorbable pins of self-reinforced poly-L-lactic acid for fixation of fractures and osteotomies. J Bone Joint Surg Br 74:853–857

    Google Scholar 

  70. Pitt CG (1990) In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York

    Google Scholar 

  71. Allock HR (1990) In: Chasin M, Langer R (eds). Biodegradable polymers as drug delivery systems. Marcel Dekker, New York

    Google Scholar 

  72. Qui LY, Zhu KJ (2000). Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubsituents: synthesis, characterization and degradation properties. J Appl Polym Sci 77:2955–2987

    Google Scholar 

  73. Ng SY, Vandamme T, Tayler MS, Heller J (1997) Synthesis and erosion studies of self-catalysed poly(orthoester)s. Macromolecules 30:770–772

    Article  CAS  Google Scholar 

  74. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  75. Li HY, Du RL, Chang J (2005) Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. J Biomater Appl 20:137–155

    Article  CAS  Google Scholar 

  76. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    CAS  Google Scholar 

  77. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  78. Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials 21:2405–2412

    Article  CAS  Google Scholar 

  79. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412

    Article  CAS  Google Scholar 

  80. Tangpasuthadol V, Pendharkar SM, Kohn J (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials: part I study of model compounds. Biomaterials 21:2371–2378

    Article  CAS  Google Scholar 

  81. Tangpasuthadol V, Pendharkar SM, Peterson RC, Kohn J (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. part II: study of model compounds. Biomaterials 21:2379–2387

    Article  CAS  Google Scholar 

  82. Mandaogade PM, Satturwar PM, Fulzele SV, Gogte BB, Dorle AK (2002) Rosin derivatives: novel film forming materials for controlled drug delivery. React Funct Polym 50:233–242

    Article  CAS  Google Scholar 

  83. Satturwar PM, Mandaogade PM, Fulzele SV, Darwhekar GN, Joshi SB, Dorle AK (2002) Synthesis and evaluation of rosin based polymers as film coating materials. Drug Dev Ind Pharm 28:383–389

    Article  Google Scholar 

  84. Sahu NH, Mandaogade PM, Deshmukh AM, Meghre VS, Dorle AK (1999) Biodegradation studies of rosin-glycerol ester derivative. J Bioact Compat Polym 14:344–360

    CAS  Google Scholar 

  85. Friess W (1998) Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136

    Google Scholar 

  86. Klammert U, Ignatius A, Wolfram U, Reuther T, Gbureck U (2011) In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater 7:3469–3475

    Google Scholar 

  87. Walton M, Cotton NJ (2007) Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl 21:395–411

    Article  CAS  Google Scholar 

  88. Schilling AF, Linhart W, Filke S, Gebauer M, Schinke T, Rueger JM, Amling M (2004) Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 25:3963–3972

    Article  CAS  Google Scholar 

  89. Xia Z, Triffitt JT (2006) A review on macrophage responses to biomaterials. Biomed Mater 1:1–9

    Article  Google Scholar 

  90. Hoebertz A, Arnett TR (2003) Isolated osteoclast cultures. Methods Mol Med 80:53–64

    Google Scholar 

  91. Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66:383–399

    CAS  Google Scholar 

  92. Boyde A, Jones SJ (1987) Early scanning electron microscopic studies of hard tissue resorption: their relation to current concepts reviewed. Scanning Microsc 1:369–381

    CAS  Google Scholar 

  93. Jones SJ, Boyde A, Ali NN (1984) The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts. Anat Embryol (Berl) 170:247–256

    Article  CAS  Google Scholar 

  94. Oursler MJ, Collin-Osdoby P, Anderson F, Li L, Webber D, Osdoby P (1991) Isolation of avian osteoclasts: improved techniques to preferentially purify viable cells. J Bone Miner Res 6:375–385

    Article  CAS  Google Scholar 

  95. Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20:1659–1668

    Article  CAS  Google Scholar 

  96. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  CAS  Google Scholar 

  97. Fuller K, Ross JL, Szewczyk KA, Moss R, Chambers TJ (2010) Bone is not essential for osteoclast activation. PLoS One 5:e12837

    Article  Google Scholar 

  98. Boyde A, Ali NN, Jones SJ (1985) Optical and scanning electron microscopy in the single osteoclast resorption assay. Scan Electron Microsc 3:1259–1271

    Google Scholar 

  99. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  CAS  Google Scholar 

  100. Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835

    Article  CAS  Google Scholar 

  101. Witte F, Eliezer A, Cohen S (2010) The history, challenges and the future of biodegradable metal implants. Adv Mater Res 95:3–7

    Article  CAS  Google Scholar 

  102. Witte F, Fischer J, Beckmann F, Störmer M, Hort N (2008) Three-dimensional microstructural analysis of Mg–Al–Zn alloys by synchrotron-radiation-based microtomography. Scripta Materialia 58:453–456

    Article  CAS  Google Scholar 

  103. Shikinami Y, Matsusue Y, Nakamura T (2005) The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Biomaterials 26:5542–5551

    Article  CAS  Google Scholar 

  104. Ritman EL (2004) Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 6:185–208

    Article  CAS  Google Scholar 

  105. Pihlajamäki H, Kinnunen J, Böstman O (1997) In vivo monitoring of the degradation process of bioresorbable polymeric implants using magnetic resonance imaging. Biomaterials 18:1311–1315

    Article  Google Scholar 

  106. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Google Scholar 

  107. Kalfakakou V, Simons TJ (1990) Anionic mechanisms of zinc uptake across the human red cell membrane. J Physiol 421:485–497

    CAS  Google Scholar 

  108. Yun Y, Dong Z, Shanov V, Schulz M, Heineman W, Kumta P, Sfeir C, Yarmolenko S (2008) Mg nanowires for biology and nanomedicine. Invention disclosure UC 108-072

    Google Scholar 

  109. Shanov V, Witte F, Schulz M, Yun Y, Kumta P, Sfeir, Yarmolenko (2008) Composition and method for producing magnesium based biodegradable composite implants. Invention disclosure UC 108-91

    Google Scholar 

  110. Mast D, Shanov V, Jayasinghe C, Schulz M (2008) Use of carbon nanotube thread, ribbon, and arrays for the transmission and reception of electromagnetic signals and radiation. Invention disclosure UC 109-35

    Google Scholar 

  111. Schulz M, Shanov V, Sundaramurthy S, Yun Y, Wagner W, Nagy P, Fox C, Witte F, Xu Z, Yarmolenko s (2009) Corrosion measurement for biodegradable metal implants. Invention disclosure UC 109-85

    Google Scholar 

  112. Shanov V, Schulz M, Yun Y, Rai D, Xue D (2009) Composition and method for magnesium biodegradable material for medical implant applications. Invention disclosure UC 109-89

    Google Scholar 

  113. Schulz MJ, Shanov VN, Sankar J, Witte F, Wagner W, Borovetz H, Kumta P, Sfeir C (2009) Permanent and biodegradable responsive implants that expand and adapt to the human body. Invention disclosure UC 109-111

    Google Scholar 

  114. Chen L, Xie J, Srivatsan M, Varadan VK (2006) Magnetic nanotubes and their potential use in neuroscience applications. Proc SPIE Int Soc Opt Eng 6172:61720

    Google Scholar 

  115. Conserva E, Lanuti A, Menini M (2010) Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis. Int J Oral Maxillofac Implants 25:1099–1107

    Google Scholar 

  116. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.W. was supported by a grant from the German Federal Ministry of Education and Science (BMBF, 16SV5057). M.M.M. is consultant to DePuy and Zimmer. Institutional support was received from Ceramtec, Aesculap, DePuy, and Zimmer. No royalties. A.F.S. has in the past 5 years provided consulting services to Biomet, Curasan, Eucro, Heraeus, IPB, and Johnson & Johnson. No royalties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arndt F. Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, D. et al. (2011). Bioresorption and Degradation of Biomaterials. In: Kasper, C., Witte, F., Pörtner, R. (eds) Tissue Engineering III: Cell - Surface Interactions for Tissue Culture. Advances in Biochemical Engineering Biotechnology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_119

Download citation

Publish with us

Policies and ethics