Skip to main content

Microfluidic Technology for Molecular Diagnostics

  • Chapter
  • First Online:
Molecular Diagnostics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 133))

Abstract

Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti JJ, Antipov E, et al (2010) “Ultrahigh-throughput screening in drop-based microfluidics for directed evolution (vol 170, pg 4004, 2010).” Proc Natl Acad Sci U S A 107(14):6550–6550

    Google Scholar 

  2. Baker CA, Duong CT et al (2009) Recent advances in microfluidic detection systems. Bioanalysis 1(5):967–975

    CAS  Google Scholar 

  3. Ballerini DR, Li X, et al (2011) “Flow control concepts for thread-based microfluidic devices.” Biomicrofluidics 5(1)

    Google Scholar 

  4. Banjanovic A (2009) Special Report: towards universal global mobile phone coverage. Euromonitor Intern

    Google Scholar 

  5. Bhandari P, Narahari T et al (2011) ‘Fab-Chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11(15):2493–2499

    CAS  Google Scholar 

  6. Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4(8):665–668

    CAS  Google Scholar 

  7. Bornhop DJ, Latham JC et al (2007) Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science 317(5845):1732–1736

    CAS  Google Scholar 

  8. Brassard D, Malic L et al (2011) Advanced EWOD-based digital microfluidic system for multiplexed analysis of biomolecular interactions. IEEE 24th international conference on micro electro mechanical systems

    Google Scholar 

  9. Brennan D, Justice J et al (2009) Emerging optofluidic technologies for point-of-care genetic analysis systems: a review. Anal Bioanal Chem 395(3):621–636

    CAS  Google Scholar 

  10. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sens Actuators A: Phys 58(1):13–18

    CAS  Google Scholar 

  11. Carrilho E, Phillips ST et al (2009) Paper microzone plates. Anal Chem 81(15):5990–5998

    CAS  Google Scholar 

  12. Cheng CM, Martinez AW et al (2010) Paper-based ELISA. Angew Chem Int Ed 49(28):4771–4774

    CAS  Google Scholar 

  13. Cherukat P, Mclaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J Fluid Mech 263:1–18

    CAS  Google Scholar 

  14. Chin CD, Laksanasopin T et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17(8):1015–1019

    CAS  Google Scholar 

  15. Chin CD, Linder V et al (2012) “Commercialization of microfluidic point-of-care diagnostic devices.” Lab Chip

    Google Scholar 

  16. Chou HP, Spence C et al (1999) “A microfabricated device for sizing and sorting DNA molecules.” Proc Natl Acad Sci U S A 96(1):11–13

    Google Scholar 

  17. Colyer CL, Mangru SD et al (1997) Microchip-based capillary electrophoresis of human serum proteins. J Chromatogr A 781(1–2):271–276

    CAS  Google Scholar 

  18. Cui X, Lee LM et al (2008) “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging.” Proc Natl Acad Sci U S A 105(31):10670–10675

    Google Scholar 

  19. Delamarche E, Bernard A et al (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276(5313):779–781

    CAS  Google Scholar 

  20. Delaney JL, Hogan CF et al (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83(4):1300–1306

    CAS  Google Scholar 

  21. Delehanty JB, Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem 74(21):5681–5687

    CAS  Google Scholar 

  22. Dittrich PS, Manz A (2005) Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal Bioanal Chem 382(8):1771–1782

    CAS  Google Scholar 

  23. Dittrich PS, Muller B et al (2004) Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor. Phys Chem Chem Phys 6(18):4416–4420

    CAS  Google Scholar 

  24. Dittrich PS, Schwille P (2003) An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal Chem 75(21):5767–5774

    CAS  Google Scholar 

  25. Dittrich PS, Tachikawa K et al (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78(12):3887–3907

    CAS  Google Scholar 

  26. Dodge A, Brunet E et al (2006) PDMS-based microfluidics for proteomic analysis. Analyst 131(10):1122–1128

    CAS  Google Scholar 

  27. Dungchai W, Chailapakul O et al (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826

    CAS  Google Scholar 

  28. Einav S, Gerber D et al (2008) Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 26(9):1019–1027

    CAS  Google Scholar 

  29. El-Ali J, Sorger PK et al (2006) Cells on chips. Nature 442(7101):403–411

    CAS  Google Scholar 

  30. Estmer Nilsson C, Abbas S et al (2010) A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 28(3):759–766

    CAS  Google Scholar 

  31. Floris A, Staal S et al (2010) A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. Lab Chip 10(14):1799–1806

    CAS  Google Scholar 

  32. Fu AY, Spence C et al (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17(11):1109–1111

    CAS  Google Scholar 

  33. Fu E, Kauffman P et al (2010) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B-Chem 149(1):325–328

    CAS  Google Scholar 

  34. Gervais L, de Rooij N et al (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23(24):H151–H176

    CAS  Google Scholar 

  35. Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9(23):3330–3337

    CAS  Google Scholar 

  36. Ghosh KK, Burns LD, et al (2011) “Miniaturized integration of a fluorescence microscope.” Nat Methods 8(10):871–U147

    Google Scholar 

  37. Gorkin R, Park J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    CAS  Google Scholar 

  38. Gubala V, Harris LF et al (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515

    CAS  Google Scholar 

  39. Gurkan UA, Moon S et al (2011) Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing. Biotechnol J 6(2):138–149

    CAS  Google Scholar 

  40. Haeberle S, Brenner T et al (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6(6):776–781

    CAS  Google Scholar 

  41. Hatch A, Garcia E et al (2004) Diffusion-based analysis of molecular interactions in microfluidic devices. Proc IEEE 92(1):126–139

    CAS  Google Scholar 

  42. Hatch A, Kamholz AE et al (2001) A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19(5):461–465

    CAS  Google Scholar 

  43. Helton KL, Nelson KE et al (2008) Conditioning saliva for use in a microfluidic biosensor. Lab Chip 8(11):1847–1851

    CAS  Google Scholar 

  44. Herr AE, Hatch AV, et al (2007) “Microfluidic immunoassays as rapid saliva-based clinical diagnostics.” Proc Natl Acad Sci U S A 104(13):5268–5273

    Google Scholar 

  45. Hosokawa K, Omata M et al (2007) Immunoassay on a power-free microchip with laminar flow-assisted dendritic amplification. Anal Chem 79(15):6000–6004

    CAS  Google Scholar 

  46. Janasek D, Franzke J et al (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442(7101):374–380

    CAS  Google Scholar 

  47. Jebrail MJ, Yang H et al (2011) A digital microfluidic method for dried blood spot analysis. Lab Chip 11(19):3218–3224

    CAS  Google Scholar 

  48. Jiang H, Weng X et al (2011) Microfluidic whole-blood immunoassays. Microfluid Nanofluid 10(5):941–964

    CAS  Google Scholar 

  49. Kamholz AE (2004) Proliferation of microfluidics in literature and intellectual property. Lab Chip 4(2):16n–20n

    CAS  Google Scholar 

  50. Khandurina J, McKnight TE et al (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72(13):2995–3000

    CAS  Google Scholar 

  51. Kim N, Kim D-K et al (2009) Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein. Sens Actuators B: Chem 143(1):444–448

    Google Scholar 

  52. Kopp MU, de Mello AJ et al (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280(5366):1046–1048

    CAS  Google Scholar 

  53. Krishnamoorthy G, Carlen ET et al (2009) Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions. Anal Chem 81(5):1957–1963

    CAS  Google Scholar 

  54. Kuhn P, Eyer K et al (2011) A Microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines. Anal Chem 83(23):8877–8885

    CAS  Google Scholar 

  55. Lee BS, Lee J-N et al (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9(11):1548–1555

    CAS  Google Scholar 

  56. Li X, Tian JF et al (2010) Thread as a versatile material for low-cost microfluidic diagnostics. Acs Appl Mater Interfaces 2(1):1–6

    Google Scholar 

  57. Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566

    CAS  Google Scholar 

  58. Liu XY, Cheng CM, et al (2011) A portable microfluidic paper-based device for ELISA. IEEE 24th international conference on micro electro mechanical systems

    Google Scholar 

  59. Lombardi D, Dittrich PS (2010) Advances in microfluidics for drug discovery. Expert Opin Drug Discov 5(11):1081–1094

    CAS  Google Scholar 

  60. Madou M (1997) Fundamentals of Microfabrication. CRC Press, New York

    Google Scholar 

  61. Madou MJ, Lee LJ et al (2001) Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomed Microdevices 3(3):245–254

    CAS  Google Scholar 

  62. Madou M, Zoval J et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    CAS  Google Scholar 

  63. Manz A, Graber N et al (1990) Miniaturized total chemical-analysis systems–a novel concept for chemical sensing. Sens Actuators B-Chem 1(1–6):244–248

    CAS  Google Scholar 

  64. Mark D, Haeberle S et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    CAS  Google Scholar 

  65. Martinez AW, Phillips ST et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    CAS  Google Scholar 

  66. Martinez AW, Phillips ST, et al (2008) “Three-dimensional microfluidic devices fabricated in layered paper and tape.” Proc Natl Acad Sci 105(50):19606–19611

    Google Scholar 

  67. Martinez AW, Phillips ST et al (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Google Scholar 

  68. McDonald JC, Duffy DC et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40

    CAS  Google Scholar 

  69. Miller E, Ng A et al (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399(1):337–345

    CAS  Google Scholar 

  70. Moon S, Keles HO et al (2009) Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron 24(11):3208–3214

    CAS  Google Scholar 

  71. Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8(12):2015–2031

    CAS  Google Scholar 

  72. Nagrath S, Sequist LV et al (2007) “Isolation of rare circulating tumour cells in cancer patients by microchip technology.” Nature 450(7173):1235–U1210

    Google Scholar 

  73. Ng AHC, Uddayasankar U et al (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397(3):991–1007

    CAS  Google Scholar 

  74. Olthuis W, Van Der Schoot BH et al (1989) A dipstick sensor for coulometric acid-base titrations. Sens Actuators 17(1–2):279–283

    CAS  Google Scholar 

  75. Osborn JL, Lutz B et al (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10(20):2659–2665

    CAS  Google Scholar 

  76. Ozcan A, Demirci U (2008) Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8(1):98–106

    CAS  Google Scholar 

  77. Pang S, Han C et al (2011) Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope. Lab Chip 11(21):3698–3702

    CAS  Google Scholar 

  78. Pang W, Zhao H, et al (2012) “Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.” Lab Chip 12(1):29–44

    Google Scholar 

  79. Peeling RW, Holmes KK et al (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82(suppl 5):v1–v6

    Google Scholar 

  80. Piia v L (2005) “Point-of-care immunotesting: approaching the analytical performance of central laboratory methods.” Clin Biochem 38(7):591–606

    Google Scholar 

  81. Pipper J, Inoue M, Ng LFP, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nature Medicine 13(10):1259–1263

    CAS  Google Scholar 

  82. Pollack MG, Shenderov AD et al (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    CAS  Google Scholar 

  83. Posthuma-Trumpie G, Korf J et al (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

    CAS  Google Scholar 

  84. Psaltis D, Quake SR et al (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    CAS  Google Scholar 

  85. Safavieh R, Mirzaei M, Qasaimeh MA, Juncker D (2009). Proceedings of MicroTAS 2009, the 13th international conference on miniaturized systems for chemistry and life sciences, ICC Jeju, Jeju, South Korea

    Google Scholar 

  86. Reches M, Mirica KA et al (2010) Thread as a matrix for biomedical assays. Acs Appl Mater Interfaces 2(6):1722–1728

    CAS  Google Scholar 

  87. Rezk AR, Qi A et al (2012) Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12(4):773–779

    CAS  Google Scholar 

  88. Robinson T, Valluri P et al (2008) Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging. Opt Lett 33(16):1887–1889

    Google Scholar 

  89. Schmid A, Kortmann H et al (2010) Chemical and biological single cell analysis. Curr Opin Biotechnol 21(1):12–20

    CAS  Google Scholar 

  90. Schulte TH, Bardell RL et al (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1–2):1–10

    CAS  Google Scholar 

  91. Seo S, Isikman SO et al (2010) High-throughput lens-free blood analysis on a chip. Anal Chem 82(11):4621–4627

    CAS  Google Scholar 

  92. Seo S, Su TW et al (2008) Multi-color LUCAS: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction. Cell Mol Bioeng 1(2–3):146–156

    Google Scholar 

  93. Seo S, Su TW et al (2009) Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9(6):777–787

    CAS  Google Scholar 

  94. Shalom D, Wootton RCR et al (2007) Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Mater Lett 61(4–5):1146–1150

    CAS  Google Scholar 

  95. Shankaran DR, Gobi KVA et al (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B-Chem 121(1):158–177

    CAS  Google Scholar 

  96. Shoji S, Esashi M et al (1988) Prototype miniature blood-gas analyzer fabricated on a silicon-wafer. Sens Actuators 14(2):101–107

    CAS  Google Scholar 

  97. Sia SK, Linder V et al (2004) An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem Int Ed 43(4):498–502

    CAS  Google Scholar 

  98. Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7(4):423–440

    CAS  Google Scholar 

  99. Srinivasan V, Pamula VK et al (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315

    CAS  Google Scholar 

  100. Steigert J, Grumann M et al (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6(8):1040–1044

    CAS  Google Scholar 

  101. Stern E, Vacic A et al (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5(2):138–142

    CAS  Google Scholar 

  102. Stevens DY, Petri CR et al (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8(12):2038–2045

    CAS  Google Scholar 

  103. Su T-W, Seo S et al (2009) High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip. Biotechnol Bioeng 102(3):856–868

    CAS  Google Scholar 

  104. Tachi T, Kaji N et al (2009) Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab Chip 9(7):966–971

    CAS  Google Scholar 

  105. Terry M (2011) Telemicroscopes and point-of-care diagnostics team up with smartphones. Telemed J e-health: Off J Am Telemed Assoc 17(5):320–323

    Google Scholar 

  106. Tourovskaia A, Figueroa-Masot X et al (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5(1):14–19

    CAS  Google Scholar 

  107. Tseng D, Mudanyali O et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10(14):1787–1792

    CAS  Google Scholar 

  108. Uludağ Y, Tothill IE (2010) Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 82(1):277–282

    Google Scholar 

  109. Wang H, Meng S et al (2008) Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochem Commun 10(3):447–450

    CAS  Google Scholar 

  110. Wang J, Ahmad H et al (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10(22):3157–3162

    CAS  Google Scholar 

  111. Wang S, Ge L et al (2012) Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31(1):212–218

    Google Scholar 

  112. Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biology 10(6):584–591

    CAS  Google Scholar 

  113. Weigl BH, Yager P (1999) Microfluidic diffusion-based separation and detection. Science 283(5400):346–347

    Google Scholar 

  114. Wen X, He H et al (2009) Specific antibody immobilization with biotin-poly(l-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips.”. J Immunol Methods 350(1–2):97–105

    CAS  Google Scholar 

  115. West J, Becker M et al (2008) Micro total analysis systems: latest achievements. Anal Chem 80(12):4403–4419

    CAS  Google Scholar 

  116. Wheeler AR (2008) Putting electrowetting to work. Science 322(5901):539–540

    CAS  Google Scholar 

  117. Whitesides GM, Ostuni E et al (2001) Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 3:335–373

    CAS  Google Scholar 

  118. WHO (2008) CD4 + T-Cell enumeration technologies; Technical Information. WHO, Geneva

    Google Scholar 

  119. Wilding P, Shoffner MA et al (1994) PCR in a silicon microstructure. Clin Chem 40(9):1815–1818

    CAS  Google Scholar 

  120. Woolley AT, Lao KQ et al (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70(4):684–688

    CAS  Google Scholar 

  121. Yager P, Edwards T et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    CAS  Google Scholar 

  122. Yamada M, Nakashima M, et al (2004) “Pinched flow fractionation:  continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel.” Anal Chem 76(18):5465–5471

    Google Scholar 

  123. Yao CY, Zhu TY et al (2010) Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. Sensors 10(6):5859–5871

    CAS  Google Scholar 

  124. Ymeti A, Greve J et al (2006) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397

    Google Scholar 

  125. Zheng G, Patolsky F et al (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23(10):1294–1301

    CAS  Google Scholar 

  126. Zheng GA, Lee SA et al (2010) Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip 10(22):3125–3129

    CAS  Google Scholar 

  127. Zhu HY, Mavandadi S et al (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra S. Dittrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, T., Dittrich, P.S. (2012). Microfluidic Technology for Molecular Diagnostics. In: Seitz, H., Schumacher, S. (eds) Molecular Diagnostics. Advances in Biochemical Engineering/Biotechnology, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_139

Download citation

Publish with us

Policies and ethics