Skip to main content

Organisms for Biofuel Production: Natural Bioresources and Methodologies for Improving Their Biosynthetic Potentials

  • Chapter
  • First Online:
Biotechnological Applications of Biodiversity

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 147))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCase:

acetyl-CoA carboxylase

ACP:

acyl carrier

CoA:

coenzyme A

DGAT:

diacylglycerol acyltransferase

DHAP:

dihydroxyacetone phosphate

ENR:

enoyl-ACP reductase

FAT:

fatty acyl-ACP thioesterase

G3PDH:

gycerol-3-phosphate dehydrogenase

GPAT:

glycerol-3-phosphate acyltransferase

HD:

3-hydroxyacyl-ACP dehydratase

KAR:

3-ketoacyl-ACP reductase

KAS:

3-ketoacyl-ACP synthase

LPAAT:

lyso-phosphatidic acid acyltransferase

LPAT:

lyso-phosphatidylcholine acyltransferase

MAT:

malonyl-CoA:ACP transacylase

PDH:

pyruvate dehydrogenase complex

References

  1. Dudley B ed (2012) BP statistical review of world energy. June 2012, BP

    Google Scholar 

  2. Conti J (2011) International energy outlook 2011. IEA, Paris

    Google Scholar 

  3. Snow N (2013) BP: shale gas, tight oil to reshape global markets by 2030. Oil Gas J 111(2B):25−25

    Google Scholar 

  4. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–189

    Google Scholar 

  5. Sorrell S, Speirs J, Bentley R et al (2012) Shaping the global oil peak: a review of the evidence on field sizes, reserve growth, decline rates and depletion rates. Energy 37(1):709–724

    Google Scholar 

  6. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288(5473):1997–2002

    CAS  Google Scholar 

  7. Zhang Q, Guan Y, Yang H (2008) ENSO amplitude change in observation and coupled models. Adv Atmos Sci 25(3):361–366

    CAS  Google Scholar 

  8. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271

    CAS  Google Scholar 

  9. Radakovits R, Jinkerson RE, Darzins A et al (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9(4):486–501

    CAS  Google Scholar 

  10. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    CAS  Google Scholar 

  11. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CAS  Google Scholar 

  12. Elmoraghy M, Farag IH (2012) Bio-jet fuel from microalgae: reducing water and energy requirements for algae growth. Res Inventy 1(2):22–30

    Google Scholar 

  13. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748

    CAS  Google Scholar 

  14. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18

    CAS  Google Scholar 

  15. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    CAS  Google Scholar 

  16. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    CAS  Google Scholar 

  17. Sheehan J, Dunahay T, Benemann J et al (1998) US department of energy’s office of fuels development, July 1998. A look back at the US department of energy’s aquatic species program. Biodiesel from algae, close out report TP-580-24190. National Renewable Energy Laboratory, Golden

    Google Scholar 

  18. Riekhof WR, Benning C (2009) Glycerolipid biosynthesis in the Chlamydomonas sourecebook. In: Harris EH (ed). Elsevier Inc., Oxford, UK.41-61

    Google Scholar 

  19. Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty-acid profile changes in chlorella (chlorophyta) during high ph-induced cell-cycle inhibition. J Phycol 26(1):72–79

    CAS  Google Scholar 

  20. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496

    CAS  Google Scholar 

  21. Banerjee A, Sharma R, Chisti Y et al (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    CAS  Google Scholar 

  22. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(7):957–970

    CAS  Google Scholar 

  23. Cobelas MA, Lechado JZ (1989) Lipids in microalgae—a review.1. biochemistry. Grasas Y Aceites 40(2):118–145

    Google Scholar 

  24. Basova MM (2005) Fatty acid composition of lipids in microalgae. Int J Algae 7(1):33–57

    Google Scholar 

  25. Yuan C, Liu J, Fan Y et al (2011) Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol Biofuels 4:47

    Google Scholar 

  26. Bigogno C, Khozin-Goldberg I, Boussiba S et al (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503

    CAS  Google Scholar 

  27. de Swaaf ME, de Rijk TC, Eggink G et al (1999) Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotechnol 70(1–3):185–192

    Google Scholar 

  28. Cohen Z, Khozin-Goldberg I, Adlerstein D et al (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743

    CAS  Google Scholar 

  29. Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-coenzyme a carboxylase in plants. Plant Physiol 108:445

    CAS  Google Scholar 

  30. Dahlqvist A, Stahl U, Lenman M et al (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97(12):6487–6492

    CAS  Google Scholar 

  31. Yoon K, Han D, Li Y et al (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724

    CAS  Google Scholar 

  32. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607

    CAS  Google Scholar 

  33. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070

    CAS  Google Scholar 

  34. Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14(9):1101–1103

    CAS  Google Scholar 

  35. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300

    CAS  Google Scholar 

  36. Gaffron H (1939) Reduction of carbon dioxide with molecular hydrogen in green algae. Nature 143:204–205

    CAS  Google Scholar 

  37. Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino-acid-sequence of hydrogenase from the green-alga Chlamydomonas-reinhardtii. Eur J Biochem 214(2):475–481

    CAS  Google Scholar 

  38. Voordouw G, Strang JD, Wilson FR (1989) Organization of the genes encoding fe hydrogenase in Desulfovibrio vulgaris subsp oxamicus monticello. J Bacteriol 171(7):3881–3889

    CAS  Google Scholar 

  39. Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochimica Et Biophysica Acta 1020(2):115–145

    CAS  Google Scholar 

  40. Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green-alga Chlamydomonas-reinhardtii. Eur J Biochem 222(3):769–774

    CAS  Google Scholar 

  41. Ghirardi ML, Posewitz MC, Maness P-C et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Ann Rev Plant Biol 58(1):71–91

    Google Scholar 

  42. Ghirardi ML, Zhang JP, Lee JW et al (2000) Microalgae: a green source of renewable H-2. Trends Biotechnol 18(12):506–511

    CAS  Google Scholar 

  43. Melis A, Zhang LP, Forestier M et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–135

    CAS  Google Scholar 

  44. Wykoff DD, Davies JP, Melis A et al (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117(1):129–139

    CAS  Google Scholar 

  45. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4):552–561

    CAS  Google Scholar 

  46. Scoma A, Krawietz D, Faraloni C et al (2012) Sustained H-2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157(4):613–619

    CAS  Google Scholar 

  47. Show KY, Lee DJ, Tay JH et al (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37(20):15616–15631

    CAS  Google Scholar 

  48. Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132

    CAS  Google Scholar 

  49. Juantorena AU, Lastres O, Hernandez G et al (2012) Hydrogen production by microorganisms and its application in a PEMFC. Int J Energy Res 36(8):902–910

    CAS  Google Scholar 

  50. Papazi A, Andronis E, Ioannidis NE et al (2012) High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga scenedesmus obliquus. Plos One 7(11):e49037

    CAS  Google Scholar 

  51. Song W, Rashid N, Choi W et al (2011) Biohydrogen production by immobilized Chlorella sp using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102(18):8676–8681

    CAS  Google Scholar 

  52. Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrogen Energy 34(11):4941–4946

    CAS  Google Scholar 

  53. Amutha KB, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102(1):194–199

    Google Scholar 

  54. He M, Li L, Zhang L et al (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. Int J Hydrogen Energy 37(22):16903–16915

    CAS  Google Scholar 

  55. Guan YF, Deng MC, Yu XJ et al (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19(1):69–73

    CAS  Google Scholar 

  56. Ran CQ, Yu XJ, Jin MF et al (2006) Role of carbonyl cyanide m-chlorophenylhydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis. Biotechnol Prog 22(2):438–443

    CAS  Google Scholar 

  57. Weare NM, Benemann JR (1974) Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol 119(1):258–265

    CAS  Google Scholar 

  58. Weare NM, Benemann JR (1973) Nitrogen-fixation by Anabaena cylindrica.1. localization of nitrogen-fixation in heterocysts. Archiv Fur Mikrobiologie 90(4):323–332

    CAS  Google Scholar 

  59. Dutta D, De D, Chaudhuri S et al (2005) Hydrogen production by Cyanobacteria. Microbiol Cell Fact 4(1):36

    Google Scholar 

  60. Bergman B, Gallon J, Rai A et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    CAS  Google Scholar 

  61. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  Google Scholar 

  62. Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33(1):123–131

    CAS  Google Scholar 

  63. Hallenbeck P, Kochian L, Weissmann J et al (1978) Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica. Biotechnol Bioeng Symp 8:283–297

    Google Scholar 

  64. Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, Spain pp 79−89

    Google Scholar 

  65. Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. Strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76(13):4293–4301

    CAS  Google Scholar 

  66. Bandyopadhyay A, Stöckel J, Min H et al (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1(9):139

    Google Scholar 

  67. Rashid N, Song W, Park J et al (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15(4):498–503

    CAS  Google Scholar 

  68. Schutz K, Happe T, Troshina O et al (2004) Cyanobacterial H-2 production—a comparative analysis. Planta 218(3):350–359

    Google Scholar 

  69. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98(1):114–120

    CAS  Google Scholar 

  70. Bernat G, Waschewski N, Roegner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Res 99(3):205–216

    CAS  Google Scholar 

  71. Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631

    CAS  Google Scholar 

  72. Marques AE, Barbosa AT, Jotta J et al (2011) Biohydrogen production by Anabaena sp PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenergy 35(10):4426–4434

    CAS  Google Scholar 

  73. Abdel-Basset R, Bader KP (2008) Hydrogen evolution in relation to PSI-reducible substrates in the cyanobacterium Oscillatoria chalybea assayed by means of mass spectrometry. Int J Hydrogen Energy 33(11):2653–2659

    CAS  Google Scholar 

  74. Huesemann MH, Hausmann TS, Carter BM et al (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium plectonema boryanum. Appl Biochem Biotechnol 162(1):208–220

    CAS  Google Scholar 

  75. Aoyama K, Uemura I, Miyake J et al (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Fermentat Bioeng 83(1):17–20

    CAS  Google Scholar 

  76. Anderson RA Kawacbi M (2005) Traditional microalgae isolation techniques in Algal culturing techniques. In: Anderson RA (ed). Elsevier Academic Press, Amsterdam, pp 83−101

    Google Scholar 

  77. Crosbie ND, Pöckl M, Weisse T (2003) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Methods 55(2):361–370

    CAS  Google Scholar 

  78. Sinigalliano CD, Winshell J, Guerrero MA et al (2009) Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia 48(4):249–257

    Google Scholar 

  79. Cellamare M, Rolland A, Jacquet S (2010) Flow cytometry sorting of freshwater phytoplankton. J Appl Phycol 22(1):87–100

    Google Scholar 

  80. Day JG, Brand JJ (2005) Cryopreservation methods for maintaining microalgal cultures. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 165−188

    Google Scholar 

  81. Chen W, Zhang C, Song L et al (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77(1):41–47

    CAS  Google Scholar 

  82. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102(1):135–141

    CAS  Google Scholar 

  83. Govender T, Ramanna L, Rawat I et al (2012) BODIPY staining, an alternative to the Nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511

    CAS  Google Scholar 

  84. Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A 106(7):2089–2090

    CAS  Google Scholar 

  85. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

    CAS  Google Scholar 

  86. Wu H, Volponi JV, Oliver AE et al (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814

    CAS  Google Scholar 

  87. Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18(3):284–291

    CAS  Google Scholar 

  88. Hu G, Fan Y, Zhang L et al (2013) Enhanced lipid productivity and photosynthesis efficiency in a desmodesmus sp. mutant induced by heavy carbon ions. Plos One 8(4):e60700

    CAS  Google Scholar 

  89. Ghirardi ML, Dubini A, Yu J et al (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    CAS  Google Scholar 

  90. Harris EH (2009) The Chalmydomonas sourcebook. Academic Press, San Diego, CA

    Google Scholar 

  91. Li Y, Han D, Hu G et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Eng 12(4):387–391

    Google Scholar 

  92. Work VH, Radakovits R, Jinkerson RE et al (2010) Increased lipid accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9(8):1251–1261

    CAS  Google Scholar 

  93. Wang ZT, Ullrich N, Joo S et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8(12):1856–1868

    CAS  Google Scholar 

  94. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–251

    CAS  Google Scholar 

  95. Nguyen AV, Thomas-Hall SR, Malnoe A et al (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga chlamydomonas reinhardtii. Eukaryotic Cell 7(11):1965–1979

    CAS  Google Scholar 

  96. Guarnieri MT, Nag A, Smolinski SL et al (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. Plos One 6(10):e25851

    CAS  Google Scholar 

  97. Rismani-Yazdi H, Haznedaroglu BZ, Bibby K et al (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Google Scholar 

  98. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C et al (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Google Scholar 

  99. Wan L, Han J, Sang M et al (2012) De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels. Plos One 7(4):e35142

    CAS  Google Scholar 

  100. Blanc G, Duncan G, Agarkova I et al (2010) The chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    CAS  Google Scholar 

  101. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657

    CAS  Google Scholar 

  102. Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65

    CAS  Google Scholar 

  103. Worden AZ, Lee J-H, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324(5924):268–272

    CAS  Google Scholar 

  104. Radakovits R, Jinkerson RE, Fuerstenberg SI et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686

    Google Scholar 

  105. Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104(18):7705–7710

    CAS  Google Scholar 

  106. Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103(31):11647–11652

    CAS  Google Scholar 

  107. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    CAS  Google Scholar 

  108. Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306(5693):79–86

    CAS  Google Scholar 

  109. Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga volvox carteri. Science 329(5988):223–226

    CAS  Google Scholar 

  110. Liolios K, Mavromatis K, Tavernarakis N et al (2008) The genomes on line database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 36:D475–D479

    CAS  Google Scholar 

  111. León-Bañares R, González-Ballester D, Galván A et al (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52

    Google Scholar 

  112. Sizova I, Fuhrmann M, Hegemann P (2001) A streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229

    CAS  Google Scholar 

  113. Kovar JL, Zhang J, Funke RP et al (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29(1):109–117

    CAS  Google Scholar 

  114. Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31(3):264–271

    CAS  Google Scholar 

  115. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447

    CAS  Google Scholar 

  116. Tang DKH, Qiao SY, Wu M (1995) Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int 36(5):1025–1035

    CAS  Google Scholar 

  117. Fischer H, Robl I, Sumper M et al (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 35(1):113–120

    CAS  Google Scholar 

  118. Nelson JA, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15(10):5762–5769

    CAS  Google Scholar 

  119. Zaslavskaia LA, Lippmeier JC, Shih C et al (2001) Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 292(5524):2073–2075

    CAS  Google Scholar 

  120. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant 19(3):353–361

    CAS  Google Scholar 

  121. Te, Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13(3):427–435

    Google Scholar 

  122. Teng CY, Qin S, Liu JG et al (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14(6):497–500

    CAS  Google Scholar 

  123. Falciatore A, Casotti R, Leblanc C et al (1999) Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnol 1(3):239–251

    CAS  Google Scholar 

  124. Zaslavskaia LA, Lippmeier JC, Kroth PG et al (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36(2):379–386

    CAS  Google Scholar 

  125. Hall LM, Taylor KB, Jones DD (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124(1):75–81

    CAS  Google Scholar 

  126. Chang M, Li F, Odom OW et al (2003) A cosmid vector containing a dominant selectable marker for cloning Chlamydomonas genes by complementation. Plasmid 49(1):75–78

    CAS  Google Scholar 

  127. Marin-Navarro J, Manuell AL, Wu J et al (2007) Chloroplast translation regulation. Photosynthesis Res 94(2–3):359–374

    CAS  Google Scholar 

  128. Casas-Mollano JA, Rohr J, Kim E-J et al (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 179(1):69–81

    CAS  Google Scholar 

  129. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell 9(1):97–106

    CAS  Google Scholar 

  130. Cerutti H, Ma X, Msanne J et al (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryotic Cell 10(9):1164–1172

    CAS  Google Scholar 

  131. Molnar A, Bassett A, Thuenemann E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174

    CAS  Google Scholar 

  132. Zhao T, Wang W, Bai X et al (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164

    CAS  Google Scholar 

  133. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Ann Rev Plant Physiol Plant Mol Biol 48:109–136

    CAS  Google Scholar 

  134. Roesler K, Shintani D, Savage L et al (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiol 113(1):75–81

    CAS  Google Scholar 

  135. Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012

    CAS  Google Scholar 

  136. Dunahay TG, Jarvis EE, Dais SS et al (1996) Manipulation of microalgal lipid production using genetic engineering. Biotechnol Appl Biochem 57–8:223–231

    Google Scholar 

  137. Vigeolas H, Waldeck P, Zank T et al (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5(3):431–441

    CAS  Google Scholar 

  138. Jain RK, Coffey M, Hi AKK et al (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyI transferase genes. Biochem Soc Trans 28(6):959–960

    Google Scholar 

  139. Taylor DC, Katavic V, Zou JT et al (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8(4):317–322

    CAS  Google Scholar 

  140. Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40(3):367–372

    CAS  Google Scholar 

  141. Wang ZT, Ullrich N, Joo S et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless chlamydomonas reinhardtii. Eukaryotic Cell 8(12):1856–1868

    CAS  Google Scholar 

  142. Voelker TA, Worrell AC, Anderson L et al (1992) Fatty-acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257(5066):72–74

    CAS  Google Scholar 

  143. Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate-specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci U S A 92(23):10639–10643

    CAS  Google Scholar 

  144. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280

    CAS  Google Scholar 

  145. Work VH, D’Adamo S, Radakovits R et al (2012) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr Opinion Biotechnol 23(3):290–297

    CAS  Google Scholar 

  146. Mussgnug JH, Thomas-Hall S, Rupprecht J et al (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    CAS  Google Scholar 

  147. Li Y, Han D, Hu G et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Eng 12(4):387–391

    Google Scholar 

  148. Li Y, Zhang X, Hu Q et al (2011) A type-2 acyl-coa:diacylglycerol acyltransferase gene is essential for endoplasmic reticulum-based triacylglycerol synthesis in Chlamydomonas reinhardtii. J Phycol 47:S59–S59

    Google Scholar 

  149. Kilian O, Benemann CSE, Niyogi KK et al (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269

    CAS  Google Scholar 

  150. Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40(4):575–585

    CAS  Google Scholar 

  151. Ohto, M-a, Fischer RL, Goldberg RB et al (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102(8):3123–3128

    CAS  Google Scholar 

  152. Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26(11):1301–1308

    CAS  Google Scholar 

  153. Tuck G, Glendining MJ, Smith P et al (2006) The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30(3):183–197

    Google Scholar 

  154. Wilcox HA (1976) The Ocean Food and Energy Farm Project. J Marine Edu 16(19):76

    Google Scholar 

  155. Benemann J (1980) Proalcohol: the Brazilian alcohol program. Biosour Dig 2(3):156−179

    Google Scholar 

  156. Sangyōshō T (1979) Sunshine Project : new energy research and development in Japan. Tokyo : Ministry of International Trade and Industry, pp:1−54

    Google Scholar 

  157. Dasgupta B (1977) India’s green revolution. Economic and political weekly, pp 241−260

    Google Scholar 

  158. Calvin M (1986) Renewable Fuels and Materials. Cell Biochem Biophys 9(1–2):189–210

    CAS  Google Scholar 

  159. Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76

    CAS  Google Scholar 

  160. Hertel TW, Golub AA, Jones AD et al (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60(3):223–231

    Google Scholar 

  161. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810

    CAS  Google Scholar 

  162. Sissell K (2013) Brazil’s BNDES invests $293 million in cellulosic ethanol producer. Chemical Week

    Google Scholar 

  163. Panella L (2010) Sugar Beet as an Energy Crop. Sugar Tech 12(3):288–293

    CAS  Google Scholar 

  164. PRANKL H (2000) Standardisation of biodiesel. Final report of NTB-net Phase IV/Topic 1

    Google Scholar 

  165. Rahman M, Niimi M, Ishii Y et al (2006) Effects of season, variety and botanical fractions on oxalate content of napiergrass (Pennisetum purpureum Schumach). Grassland Sci 52(4):161–166

    Google Scholar 

  166. Stewart J, Toma Y, FERNÁNDEZ FG et al (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Global Change Biol Bioenergy 1(2):126–153

    Google Scholar 

  167. Sumathi S, Chai S, Mohamed A (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421

    CAS  Google Scholar 

  168. Brosse N, Dufour A, Meng XZ et al (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts Biorefining-Biofpr 6(5):580–598

    CAS  Google Scholar 

  169. Chung J-H, Kim D-S (2012) Miscanthus as a potential bioenergy crop in East Asia. J Crop Sci Biotechnol 15(2):65–77

    Google Scholar 

  170. Greef JM, Deuter M, Jung C et al (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol 44(2):185–195

    Google Scholar 

  171. Atienza SG, Satovic Z, Petersen KK et al (2003) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theoret Appl Genet 107(5):857–863

    CAS  Google Scholar 

  172. Atienza SG, Satovic Z, Petersen KK et al (2003) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theoret Appl Genet 107(1):123–129

    CAS  Google Scholar 

  173. Swaminathan K, Alabady MS, Varala K et al (2010) Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11(2):R12

    Google Scholar 

  174. Hu N, Yuan B, Sun J et al (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368

    CAS  Google Scholar 

  175. Yuangsaard N, Yongmanitchai W, Yamada M et al (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie Van Leeuwenhoek Int J General Mol Microbiol 103(3):577–588

    CAS  Google Scholar 

  176. Khambhaty Y, Upadhyay D, Kriplani Y et al (2013) Bioethanol from Macroalgal Biomass: Utilization of Marine Yeast for Production of the Same. Bioenergy Res 6(1):188–195

    CAS  Google Scholar 

  177. Liu XY, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586

    CAS  Google Scholar 

  178. Ageitos JM, Vallejo JA, Veiga-Crespo P et al (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227

    CAS  Google Scholar 

  179. Beopoulos A, Cescut J, Haddouche R et al (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387

    CAS  Google Scholar 

  180. Wang JJ, Zhang BR, Chen SL (2011) Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem 46(7):1436–1441

    CAS  Google Scholar 

  181. Sabirova JS, Haddouche R, Van Bogaert IN et al (2011) The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microbial Biotechnol 4(1):47–54

    CAS  Google Scholar 

  182. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Eng 15:1–9

    CAS  Google Scholar 

  183. Hu C, Wu S, Wang Q et al (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4(1):25

    CAS  Google Scholar 

  184. Gong Z, Wang Q, Shen H et al (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24

    CAS  Google Scholar 

  185. Gujjari P, Suh SO, Coumes K et al (2011) Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp nov and Trichosporon oleaginosus sp nov. Mycologia 103(5):1110–1118

    Google Scholar 

  186. Kumar S, Kushwaha H, Bachhawat AK et al (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryotic Cell 11(8):1083–1084

    Google Scholar 

  187. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    CAS  Google Scholar 

  188. Franks AE, Nevin KP (2010) Microbial Fuel Cells. Curr Rev Energies 3(5):899–919

    CAS  Google Scholar 

  189. Gunawardena A, Fernando S, To F (2008) Performance of a yeast-mediated biological fuel cell. Int J Mol Sci 9(10):1893–1907

    CAS  Google Scholar 

  190. Favre MF, Carrard D, Ducommun R et al (2009) Online monitoring of yeast cultivation using a fuel-cell-type activity sensor. J Ind Microbiol Biotechnol 36(10):1307–1314

    CAS  Google Scholar 

  191. Sayed ET, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell. Bioelectrochemistry 86:97–101

    CAS  Google Scholar 

  192. Hubenova YV, Rashkov RS, Buchvarov VD et al (2011) Improvement of yeast-biofuel cell output by electrode modifications. Ind Eng Chem Res 50(2):557–564

    CAS  Google Scholar 

  193. Prasad D, Arun S, Murugesan A et al (2007) Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosensors Bioelectronics 22(11):2604–2610

    CAS  Google Scholar 

  194. Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387

    CAS  Google Scholar 

  195. Haslett ND, Rawson FJ, Barriere F et al (2011) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors Bioelectronics 26(9):3742–3747

    CAS  Google Scholar 

  196. Jarboe LR, Shanmugam KT, Ingram LO (2009) Ethanol. In: Schaechter M (ed) The desk encyclopedia of Microbiology, 2nd edn. Elsevier, Oxford and San Diego, pp 428–437

    Google Scholar 

  197. Sveinsdottir M, Sigurbjornsdottir MA, Orlygsson J (2011) Ethanol and hydrogen production with thermophilic bacteria from sugars and complex biomass. In: Shaukat S (ed) Progress in biomass and bioenergy production, In Tech, pp 359–394

    Google Scholar 

  198. Carere CR, Rydzak T, Verbeke TJ et al (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295

    CAS  Google Scholar 

  199. Liu S, Dien BS, Cotta MA (2005) Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis. Curr Microbiol 50(6):324–328

    CAS  Google Scholar 

  200. Kaczowka SJ, Reuter CJ, Talarico LA et al (2005) Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. Archaea 1(5):327–334

    CAS  Google Scholar 

  201. Chandra Raj K, Ingram LO, Maupin-Furlow JA (2001) Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol 176(6):443–451

    CAS  Google Scholar 

  202. Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44(5):1309–1314

    CAS  Google Scholar 

  203. Ohta K, Beall DS, Mejia JP et al (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900

    CAS  Google Scholar 

  204. Taylor MP, Eley KL, Martin S et al (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27(7):398–405

    CAS  Google Scholar 

  205. Balusu R, Paduru RR, Kuravi SK et al (2005) Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem 40(9):3025–3030

    CAS  Google Scholar 

  206. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49(6):639–648

    Google Scholar 

  207. Sveinsdottir M, Baldursson SRB, Orlygsson J (2009) Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Icelandic Agricul Sci 22:45–58

    Google Scholar 

  208. Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116(6):A254–A257

    Google Scholar 

  209. Ji SQ, Wang SA, Tan Y et al (2012) An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. Fems Microbiol Lett 335(1):39–46

    CAS  Google Scholar 

  210. Kopke M, Mihalcea C, Bromley JC et al (2011) Fermentative production of ethanol from carbon monoxide. Curr Opinion Biotechnol 22(3):320–325

    Google Scholar 

  211. Choi WJ, Hartono MR, Chan WH et al (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89(4):1255–1264

    CAS  Google Scholar 

  212. Xiao Z, Wang X, Huang Y et al (2012) Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5(1):88

    CAS  Google Scholar 

  213. Gupta A, Murarka A, Campbell P et al (2009) Anaerobic fermentation of glycerol in paenibacillus macerans: metabolic pathways and environmental determinants. Appl Environ Microbiol 75(18):5871–5883

    CAS  Google Scholar 

  214. Jessen JE, Orlygsson J (2012) Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J Biomed Biotechnol 2012:186982

    Google Scholar 

  215. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145(1–3):99–110

    CAS  Google Scholar 

  216. Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77(1):61–68

    CAS  Google Scholar 

  217. Zambare VP, Bhalla A, Muthukumarappan K et al (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618

    CAS  Google Scholar 

  218. Qi X, Zhang Y, Tu R et al (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. J Appl Microbiol 110(6):1584–1591

    CAS  Google Scholar 

  219. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534

    Google Scholar 

  220. Zheng YN, Li LZ, Xian M et al (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36(9):1127–1138

    CAS  Google Scholar 

  221. Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28(5):651–657

    CAS  Google Scholar 

  222. Chua TK, Liang DW, Qi C et al (2012) Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. Bioresour Technol 135:372–378

    Google Scholar 

  223. Bramono SE, Lam YS, Ong SL et al (2011) A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol 102(20):9558–9563

    CAS  Google Scholar 

  224. Montoya D, Spitia S, Silva E et al (2000) Isolation of mesophilic solvent-producing clostridia from Colombian sources: physiological characterization, solvent production and polysaccharide hydrolysis. J Biotechnol 79(2):117–126

    CAS  Google Scholar 

  225. Montoya D, Arevalo C, Gonzales S et al (2001) New solvent-producing Clostridium sp strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27(5):329–335

    CAS  Google Scholar 

  226. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opinion Biotechnol 18(3):220–227

    CAS  Google Scholar 

  227. Virunanon C, Chantaroopamai S, Denduangbaripant J et al (2008) Solventogenic-cellulolytic clostridia from 4-step-screening process in agricultural waste and cow intestinal tract. Anaerobe 14(2):109–117

    CAS  Google Scholar 

  228. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metabolic Eng 10(6):295–304

    CAS  Google Scholar 

  229. Ting CNW, Wu JC, Takahashi K et al (2012) Screened butanol-tolerant enterococcus faecium capable of butanol production. Appl Biochem Biotechnol 168(6):1672–1680

    CAS  Google Scholar 

  230. Peralta-Yahya PP, Zhang F, del Cardayre SB et al (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328

    CAS  Google Scholar 

  231. Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 3:196

    Google Scholar 

  232. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    CAS  Google Scholar 

  233. Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111

    Google Scholar 

  234. Tabatabaei M, Tohidfar M, Jouzani GS et al (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15(4):1918–1927

    CAS  Google Scholar 

  235. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297

    CAS  Google Scholar 

  236. Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593

    CAS  Google Scholar 

  237. Chen WM, Tseng ZJ, Lee KS et al (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063–1070

    CAS  Google Scholar 

  238. Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41(3):682–688

    CAS  Google Scholar 

  239. van Niel EWJ, Budde MAW, de Haas GG et al (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27(11–12):1391–1398

    Google Scholar 

  240. van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262

    Google Scholar 

  241. Munro SA, Zinder SH, Walker LP (2009) The Fermentation Stoichiometry of Thermotoga neapolitana and Influence of Temperature, Oxygen, and pH on Hydrogen Production. Biotechnol Prog 25(4):1035–1042

    CAS  Google Scholar 

  242. D’Ippolito G, Dipasquale L, Vella FM et al (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrogen Energy 35(6):2290–2295

    Google Scholar 

  243. de Vrije T, Mars AE, Budde MAW et al (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367

    CAS  Google Scholar 

  244. de Vrije T, Bakker RR, Budde MAW et al (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12

    Google Scholar 

  245. Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrogen Energy 35(3):1128–1137

    CAS  Google Scholar 

  246. Almarsdottir AR, Taraceviz A, Gunnarsson I et al (2010) Hydrogen production from sugars and complex biomass by Clostridium species, AK(14), isolated from Icelandic hot spring. Icelandic Agricul Sci 23:61–71

    Google Scholar 

  247. Cao GL, Ren NQ, Wang AJ et al (2010) Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Bioresour Technol 101(6):2053–2058

    CAS  Google Scholar 

  248. Ren NQ, Chua H, Chan SY et al (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780

    CAS  Google Scholar 

  249. Cheong DY, Hansen CL, Stevens DK (2007) Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnol Bioeng 96(3):421–432

    CAS  Google Scholar 

  250. Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908

    CAS  Google Scholar 

  251. Koskinen PEP, Beck SR, Orlygsson J et al (2008) Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from icelandic geothermal areas. Biotechnol Bioeng 101(4):679–690

    CAS  Google Scholar 

  252. Koskinen PEP, Lay CH, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an icelandic hot spring. Biotechnol Bioeng 101(4):665–678

    CAS  Google Scholar 

  253. Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Water Res 43(5):1414–1424

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB707404), the National Key Technology R&D Research Programs (2011BAD22B02-01, 2009AA10Z101), the Natural Science Foundation of China (U1232126), and the Key Research Program of Shandong Province (2012GGF01023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, G., Ji, S., Yu, Y., Wang, S., Zhou, G., Li, F. (2013). Organisms for Biofuel Production: Natural Bioresources and Methodologies for Improving Their Biosynthetic Potentials. In: Mukherjee, J. (eds) Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_245

Download citation

Publish with us

Policies and ethics