Skip to main content

Structure, Mechanism, and Mutation of Bacterial Luciferase

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 154))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AbouKhair NK, Ziegler MM, Baldwin TO (1985) Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. Biochemistry 24:3942–3947

    Article  CAS  Google Scholar 

  2. Abu-Soud HM, Clark AC, Francisco WA, Baldwin TO, Raushel FM (1993) Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. J Biol Chem 268:7699–7706

    CAS  Google Scholar 

  3. Abu-Soud HM, Mullins LS, Baldwin TO, Raushel FM (1992) Stopped-flow kinetic analysis of the bacterial luciferase reaction. Biochemistry 31:3807–3813

    Article  CAS  Google Scholar 

  4. Baldwin TO, Chen LH, Chlumsky LJ, Devine JH, Ziegler MM (1989) Site-directed mutagenesis of bacterial luciferase: analysis of the essential thiol. J Biolumin Chemilumin 4:40–48

    Article  CAS  Google Scholar 

  5. Balke K, Kadow M, Mallin H, Saß S, Bornscheuer UT (2012) Discovery, application and protein engineering of Baeyer–Villiger monooxygenases for organic synthesis. Org Biomol Chem 10:6249–6265

    Article  CAS  Google Scholar 

  6. Balny C, Hastings JW (1975) Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry 14:4719–4723

    Article  CAS  Google Scholar 

  7. Becvar JE, Tu S-C, Hastings JW (1978) Activity and stability of the luciferase-flavin intermediate. Biochemistry 17:1807–1812

    Article  CAS  Google Scholar 

  8. Boylan M, Pelletier J, Meighen EA (1989) Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. J Biol Chem 264:1915–1918

    CAS  Google Scholar 

  9. Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148

    Article  CAS  Google Scholar 

  10. Campbell ZT, Baldwin TO (2009) Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates. J Biol Chem 284:32827–32834

    Article  CAS  Google Scholar 

  11. Campbell ZT, Baldwin TO, Miyashita O (2010) Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophys J 99:4012–4019

    Article  CAS  Google Scholar 

  12. Campbell ZT, Weichsel A, Montfort WR, Baldwin TO (2009) Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit. Biochemistry 48:6085–6094

    Article  CAS  Google Scholar 

  13. Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37:373–380

    Article  CAS  Google Scholar 

  14. Choi H, Tang C-K, Tu S-C (1995) Catalytically active forms of the individual subunits of Vibrio harveyi luciferase and their kinetic and binding properties. J Biol Chem 270:16813–16819

    Article  CAS  Google Scholar 

  15. Cline TW, Hastings JW (1972) Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry 11:3359–3370

    CAS  Google Scholar 

  16. Cline TW, Hastings JW (1974) Mutated luciferases with altered bioluminescence emission spectra. J Biol Chem 249:4668–4669

    CAS  Google Scholar 

  17. Cole LJ, Entsch B, Ortiz-Maldonado M, Ballou DP (2005) Properties of p-hydroxybenzoate hydroxylase when stabilized in its open conformation. Biochemistry 44:14807–14817

    Article  CAS  Google Scholar 

  18. Delong EF, Steinhauer D, Israel A, Nealson KH (1987) Isolation of the lux gene from Photobacterium leiognathi and expression in Escherichia coli. Gene 54:203–210

    Article  CAS  Google Scholar 

  19. Eberhard A, Hastings JW (1972) A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem Biophys Res Commun 47:348–353

    Article  CAS  Google Scholar 

  20. Eckstein JW, Hastings JW, Ghisla S (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 32:404–411

    Article  CAS  Google Scholar 

  21. Engebrecht J, Simon M, Silverman M (1985) Measuring gene expression with light. Science 227:1345–1347

    Article  CAS  Google Scholar 

  22. Entsch B, Cole LJ, Ballou DP (2005) Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch Biochem Biophys 433:297–311

    Article  CAS  Google Scholar 

  23. Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Nati Acad Sci USA 86:6528–6532

    Article  CAS  Google Scholar 

  24. Fisher AJ, Thompson TB, Thoden JB, Baldwin TO (1996) The 1.5 Å resolution crystal structure of bacterial luciferase low salt conditions. J Biol Chem 271:21956–21968

    Article  CAS  Google Scholar 

  25. Francisco WA, Abu-Soud HM, Baldwin TO, Raushel FM (1993) Interaction of bacterial luciferase with aldehyde substrates and inhibitors. J Biol Chem 268:24734–24741

    CAS  Google Scholar 

  26. Francisco WA, Abu-Soud HM, DelMonte AJ, Singleton DA, Baldwin TO, Raushel FM (1998) Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 37:2596–2606

    Article  CAS  Google Scholar 

  27. Francisco WA, Abu-Soud HM, Topgi R, Baldwin TO, Raushel FM (1996) Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives. J Biol Chem 27:104–110

    Google Scholar 

  28. Fried A, Tu S-C (1984) Affinity labeling of the aldehyde site of bacterial luciferase. J Biol Chem 259:10754–10759

    CAS  Google Scholar 

  29. Ghisla S, Hastings JW, Favaudon V, Lhoste JM (1978) Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination. Proc Natl Acad Sci USA 75:5860–5863

    Article  CAS  Google Scholar 

  30. Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    Article  CAS  Google Scholar 

  31. Gunsalus-Miguel A, Meighen EA, Nicoli MZ, Nealson KH, Hastings JW (1972) Purification and properties of bacterial luciferases. J Biol Chem 247:398–404

    CAS  Google Scholar 

  32. Hastings JW, Balny C, Peuch CL, Douzou P (1973) Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci USA 70:3468–3472

    Article  CAS  Google Scholar 

  33. Hastings JW, Balny C (1975) The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem 250:7288–7293

    CAS  Google Scholar 

  34. Holzman TF, Baldwin TO (1980) Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature. Proc Natl Acad Sci USA 77:6363–6367

    Article  CAS  Google Scholar 

  35. Holzman TF, Baldwin TO (1980) The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum. Biochem Biophys Res Commun 94:1199–1206

    Article  CAS  Google Scholar 

  36. Holzman TF, Baldwin TO (1983) Reversible inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: kinetic mechanism and ligand effects. Biochemistry 22:2838–2846

    Article  CAS  Google Scholar 

  37. Hosseinkhani S, Szittner R, Meighen EA (2005) Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Biochem J 385:575–580

    Article  CAS  Google Scholar 

  38. Huang S, Tu S-C (1997) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry 36:14609–14615

    Article  CAS  Google Scholar 

  39. Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544:2–17

    Article  CAS  Google Scholar 

  40. Kaaret TW, Bruice TC (1990) Electrochemical luminescence with N(5)-ethyl-4a-hydroxy-3-methyl-4a,5-dihydrolumiflavin. The mechanism of bacterial luciferase. Photochem Photobiol 51:629–633

    Article  CAS  Google Scholar 

  41. KÜrfurst M, Ghisla S, Hastings JW (1984) Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proc Natl Acad Sci USA 81:2990–2994

    Article  Google Scholar 

  42. Kurfuerst M, Macheroux P, Ghisla S, Hastins JW (1987) Isolation and characterization of the transient, luciferase-bound flavin-4a-hydroxide in the bacterial luciferase reaction. Biochim Biophys Acta 924:104–110

    Article  CAS  Google Scholar 

  43. Lei B, Cho KW, Tu S-C (1994) Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. J Biol Chem 269:5612–5618

    CAS  Google Scholar 

  44. Lei B, Ding Q, Tu S-C (2004) Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5’-phosphate as a model. Biochemistry 43:15975–15982

    Article  CAS  Google Scholar 

  45. Li C-H, Tu S-C (2005) Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry 44:12970–12977

    Article  CAS  Google Scholar 

  46. Li Z, Meighen EA (1994) The turnover of bacterial luciferase is limited by a slow decomposition of the ternary enzyme-product complex of luciferase, FMN, and fatty acid. J Biol Chem 269:6640–6644

    CAS  Google Scholar 

  47. Lin LY-C, Sulea T, Szittner R, Kor C, Purisima EO, Meighen EA (2002) Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the structure and function of Vibrio harveyi luciferase. Biochemistry 41:9938–9945

    Article  CAS  Google Scholar 

  48. Lin LY-C, Szittner R, Friedman R, Meighen EA (2004) Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Biochemistry 43:3183–3194

    Article  CAS  Google Scholar 

  49. Low JC, Tu S-C (2002) Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. Biochemistry 41:1724–1731

    Article  CAS  Google Scholar 

  50. Macheroux P, Ghisla S, Hastings JW (1993) Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction. Biochemistry 32:14183–14186

    Article  CAS  Google Scholar 

  51. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55:123–142

    CAS  Google Scholar 

  52. Moore C, Lei B, Tu S-C (1999) Relationship between the conserved α subunit arginine 107 and effects of phosphate on activity and stability of Vibrio harveyi luciferase. Arch Biochem Biophys 370:45–50

    Article  CAS  Google Scholar 

  53. Nicoli MZ, Meighen EA, Hastings JW (1974) Bacterial luciferase. Chemistry of the reactive sulfhydryl. J Biol Chem 249:2385–2392

    CAS  Google Scholar 

  54. Nijvipakul S, Ballou DP, Chaiyen P (2010) Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): Half-sites reactivity. Biochemistry 49:9241–9248

    Article  CAS  Google Scholar 

  55. Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538

    Article  CAS  Google Scholar 

  56. Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Genes 81:335–347

    CAS  Google Scholar 

  57. Palfey BA, Massey V (1998) Flavin-dependent enzymes. In: Sinnott M (ed) Comprehensive biological catalysis. Academic Press, San Deigo, A mechanistic reference, pp 1–27

    Google Scholar 

  58. Palfey BA, McDonald CA (2010) Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 493:26–36

    Article  CAS  Google Scholar 

  59. Raushel FM, Baldwin TO (1989) Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Biochem Biophys Res Commun 164:1137–1142

    Article  CAS  Google Scholar 

  60. Shimomura O (2006) Bioluminescence: chemical principles and methods, 1st edn. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 30–46

    Google Scholar 

  61. Sparks JM, Baldwin TO (2001) Functional implications of the unstructured loop in the (β/α)8 barrel structure of the bacterial luciferase α subunit. Biochemistry 40:15436–15443

    Article  CAS  Google Scholar 

  62. Suadee C, Nijvipakul S, Svasti J, Entsch B, Ballou DP, Chaiyen P (2007) Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues. J Biochem 142:539–552

    Article  CAS  Google Scholar 

  63. Sucharitakul J, Phongsak T, Entsch B, Svasti J, Chaiyen P, Ballou DP (2007) Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase. Biochemistry 46(783):8611–8623

    Article  CAS  Google Scholar 

  64. Sucharitakul J, Tinikul R, Chaiyen P (2014) Coordination of reduced flavin transfer between the proteins of two-component flavin-dependent monooxygenases. Arch Biochem Biophys 555–556:33–46

    Google Scholar 

  65. Suzuki K, Kaidoh T, Katagiri M, Tsuchiya T (1983) O2 incorporation into a long-chain fatty acid during bacterial luminescence. Biochim Biophys Acta 722:279–301

    Google Scholar 

  66. Szittner R, Meighen E (1990) Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 265:16581–16587

    CAS  Google Scholar 

  67. Tinikul R, Pitsawong W, Sucharitakul J, Nijvipakul S, Ballou DP, Chaiyen P (2013) The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Biochemistry 52:6834–6843

    Article  CAS  Google Scholar 

  68. Tinikul R, Thotsaporn K, Thaveekarn W, Jitrapakdee S, Chaiyen P (2012) The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter. J Biotechnol 162:346–353

    Article  CAS  Google Scholar 

  69. Tongsook C, Sucharitakul J, Thotsaporn K, Chaiyen P (2011) Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J Biol Chem 286:44491–44502

    Article  CAS  Google Scholar 

  70. Tu S-C (1982) Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins. J Biol Chem 257:3719–3725

    CAS  Google Scholar 

  71. Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci USA 76:265–267

    Article  CAS  Google Scholar 

  72. Valkova N, Szittner R, Meighen EA (1999) Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Biochemistry 38:13820–13828

    Article  CAS  Google Scholar 

  73. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  CAS  Google Scholar 

  74. Villa R, Willetts A (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B: Enzym 2:193–197

    Article  CAS  Google Scholar 

  75. Werlund-Karlsson A, Saviranta P, Karp M (2002) Generation of thermostable monomeric luciferases from Photorhabdus luminescens. Biochem Biophys Res Commun 296:1072–1076

    Article  CAS  Google Scholar 

  76. Xi L, Cho K-W, Herndon ME, Tu S-C (1990) Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue. J Biol Chem 265:4200–4203

    CAS  Google Scholar 

  77. Xin X, Xi L, Tu S-C (1991) Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase α subunit. Biochemistry 30:11255–11262

    Article  CAS  Google Scholar 

  78. Xin X, Xi L, Tu S-C (1994) Probing the Vibrio harveyi luciferase β subunit functionality and the intersubunit domain by site-directed mutagenesis. Biochemistry 33:12194–12201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge research support from The Thailand Research Fund RTA5680001 (to P.C.), Mahidol University (to R.T. and P.C.) and Mahidol University (Talent Management Project to R.T.). We are grateful to Danaya Pakotiprapha for assistance with PyMOL figure creation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pimchai Chaiyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tinikul, R., Chaiyen, P. (2014). Structure, Mechanism, and Mutation of Bacterial Luciferase. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3. Advances in Biochemical Engineering/Biotechnology, vol 154. Springer, Cham. https://doi.org/10.1007/10_2014_281

Download citation

Publish with us

Policies and ethics