Skip to main content

Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors

  • Chapter
  • First Online:
Bioreactor Engineering Research and Industrial Applications II

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

µLC:

Microcapillary liquid chromatography

13C-MFA:

Labeling experiments for metabolic flux analysis

13DPG:

1,3-bisphospho-D-glycerate

2PG:

2-phospho-D-glycerate

3DHS:

3-dehydroshikimate

3PG:

3-phospho-D-glycerate

AcCoA:

Acetyl coenzyme A

AKG:

α-ketoglutarate

CDW:

Cell dry weight

CE:

Capillary electrophoresis

CIT:

Citrate

CER:

Carbon dioxide evolution rate

COBRA:

Constraint-based reconstruction and analysis

DAHP:

3-deoxy-D-arabino-heptulosonate-7-phosphate

DHAP:

Dihydroxyacetone phosphate

E. coli :

Escherichia coli

E4P:

Erythrose-4-phosphate

ESI:

Electrospray ionization

F6P:

Fructose-6-phosphate

FBA:

Flux balance analysis

FBP:

Fructose-1,6-bisphosphate

FUM:

Fumarate

FVA:

Flux variability analysis

G6P:

Glucose-6-phosphate

GAP:

Glyceraldehyde-3-phosphate

GC:

Gas chromatography

gFBA:

Geometric flux balance analysis

GLYC:

Glycerol

ICIT:

Isocitrate

IDMS:

Isotope dilution mass spectrometry

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

LC:

Liquid chromatography

llFVA:

Loopless FVA

LP:

Linear programming

L-phe:

L-phenylalanine

L-trp:

L-tryptophan

L-tyr:

L-tyrosine

m/z:

Mass to charge ratio

MAL:

Malate

MALDI:

Matrix-assisted laser desorption ionization

MCA:

Metabolic control analysis

MFA:

Metabolic flux analysis

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

OAA:

Oxaloacetate

OUR:

Oxygen uptake rate

PEP:

Phosphoenolpyruvate

PPHN:

Prephenate

PYR:

Pyruvate

R5P:

Ribose-5-phosphate

Ru5P:

Ribulose-5-phosphate

S7P:

Sedoheptulose-7-phosphate

SHIK:

Shikimate

S3P:

Shikimate-3-phosphate

SUC:

Succinate

SuccCoA:

Succinyl coenzyme A

tFVA:

Thermodynamically constrained FVA

TOF:

Time of flight

UHPLC:

Ultrahigh-performance liquid chromatography

U-13C:

Uniform 13C labeled

X5P:

Xylulose-5-phosphate

References

  1. Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BØ (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12(3):173–186

    Article  CAS  Google Scholar 

  2. Wiechert W, Noack S (2011) Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. Curr Opin Biotechnol 22(5):604–610

    Article  CAS  Google Scholar 

  3. Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic models in industrial biotechnology—improving cell factory performance. Metab Eng 24:38–60

    Article  CAS  Google Scholar 

  4. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Sys Biol 5:320

    Google Scholar 

  5. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering—principles and methodologies. Academic Press, San Diego

    Google Scholar 

  6. Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196

    CAS  Google Scholar 

  7. Magnus JB, Hollwedel D, Oldiges M, Takors R (2006) Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22:1071–1083

    Article  CAS  Google Scholar 

  8. Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Heijnen JJ (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88(2):157–167

    Article  CAS  Google Scholar 

  9. Taymaz-Nikerel H, van Gulik WM, Heijnen JJ (2011) Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions. Metab Eng 13(3):307–318

    Article  CAS  Google Scholar 

  10. Mashego MR, van Gulik WM, Heijnen JJ (2007) Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res 7(1):48–66

    Article  CAS  Google Scholar 

  11. Wu L, Mashego MR, Pröll AM, Vinke JL, Ras C, van Dam J, van Winden WA, van Gulik WM, Heijnen JJ (2006) In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation. Metab Eng 8(2):160–171

    Article  CAS  Google Scholar 

  12. Nasution U, van Gulik WM, Pröll A, van Winden WA, Heijnen JJ (2006) Generating short-term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the bioscope mini reactor. Metab Eng 8(5):395–405

    Article  CAS  Google Scholar 

  13. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79(1):53–73

    Article  CAS  Google Scholar 

  14. Aboka FO, Yang H, de Jonge LP, Kerste R, van Winden WA, van Gulik WM, Hoogendijk R, Oudshoorn A, Heijnen JJ (2006) Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 95(6):1032–1042

    Article  CAS  Google Scholar 

  15. Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79(6):674–681

    Article  CAS  Google Scholar 

  16. Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8(4):370–383

    Article  CAS  Google Scholar 

  17. Kresnowati MTAP, van Winden WA, van Gulik WM, Heijnen JJ (2008) Dynamic in vivo metabolome response of Saccharomyces cerevisiae to a stepwise perturbation of the ATP requirement for benzoate export. Biotechnol Bioeng 99(2):421–441

    Article  CAS  Google Scholar 

  18. Nasution U, van Gulik WM, Ras C, Pröll A, Heijnen JJ (2008) A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metab Eng 10(1):10–23

    Article  CAS  Google Scholar 

  19. Link H, Anselment B, Weuster-Botz D (2010) ‘Rapid media transition’: an experimental approach for steady-state analysis of metabolic pathways. Biotechnol Prog 26(1):1–10

    CAS  Google Scholar 

  20. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Sys Biol 2:68–10

    Google Scholar 

  21. Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Google Scholar 

  22. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  CAS  Google Scholar 

  23. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2013) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29(1):143–145

    Article  CAS  Google Scholar 

  24. Wasylenko TM, Stephanopoulos G (2015) Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotech Bioeng 112(3):470–483

    Google Scholar 

  25. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42:317–325

    Google Scholar 

  26. Antoniewicz MR (2013) 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotech 24:1116–1121

    Google Scholar 

  27. Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755

    Google Scholar 

  28. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks ODK, Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM (2015) A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr Opin Biotech 34:189–201

    Google Scholar 

  29. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  30. Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotech 129(2):249–267

    Article  CAS  Google Scholar 

  31. Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99(5):1170–85

    Article  CAS  Google Scholar 

  32. Zamboni N, Fendt SM, Rühl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4(6):878–92

    Article  CAS  Google Scholar 

  33. Noack S, Nöh K, Moch M, Oldiges M, Wiechert W (2011) Stationary versus non-stationary 13C-MFA: a comparison using a consistent dataset. J Biotech 154:179–190

    Article  CAS  Google Scholar 

  34. Nöh K, Wiechert W (2011) The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol 91:1247–1265

    Article  CAS  Google Scholar 

  35. Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Mol Sys Biol 24(6):979–86

    CAS  Google Scholar 

  36. Nöh K, Wiechert W (2006) Experimental design principles for isotopically instationary 13C labeling experiments. Biotechnol Bioeng 94(2):234–51

    Article  CAS  Google Scholar 

  37. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotech Bioeng 99(3):686–699

    Google Scholar 

  38. Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9):2692–2699

    Article  CAS  Google Scholar 

  39. Bordbar A, Monk JM, King ZA, Palsson BØ (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107–120

    Article  CAS  Google Scholar 

  40. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Sys Biol 9:661

    Article  CAS  Google Scholar 

  41. Orth JD, Palsson BØ (2010) What is flux balance analysis. Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  42. Feist AM, Palsson BØ (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  CAS  Google Scholar 

  43. Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B (2010) Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng 12:150–160

    Article  CAS  Google Scholar 

  44. Weiner M, Tröndle J, Albermann C, Sprenger GA, Weuster-Botz D (2014) Improvement of constraint-based flux estimation during L-phenylalanine production with Escherichia coli using targeted knock-out mutants. Biotechnol Bioeng 111:1406–1416

    Article  CAS  Google Scholar 

  45. Beard DA, Liang SD, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83:79–86

    Article  CAS  Google Scholar 

  46. Price ND, Famili I, Beard DA, Palsson BØ (2002) Extreme pathways and Kirchhoff’s second law. Biophys J 83:2879–2882

    Article  CAS  Google Scholar 

  47. Reed J (2012) Shrinking the metabolic solution space using experimental datasets. Biophys J 8(8):e1002662

    CAS  Google Scholar 

  48. Majewski RA, Domach MM (1990) Simple constrained optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35:732–738

    Article  CAS  Google Scholar 

  49. Reed JL, Vo TD, Schilling CH, Palsson BØ (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  Google Scholar 

  50. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  Google Scholar 

  51. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(1).

    Google Scholar 

  52. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  CAS  Google Scholar 

  53. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol 7:535

    Article  Google Scholar 

  54. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae. Genome Res 13:244–253

    Article  CAS  Google Scholar 

  55. Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S (2008) Genome-scale reconstruction of the Saccharomyces cerevisiae. Genome Res 2:71

    Google Scholar 

  56. Nookaew I, Olivares-Hernández R, Bhumiratana S, Nielsen J (2011) Genome-scale metabolic models of Saccharomyces cerevisiae. Methods Mol Biol 759:445–463

    Article  CAS  Google Scholar 

  57. Dias O, Pereira R, Gombert AK, Ferreira EC, Rocha I (2014) iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis. Biotechnol J 9(6):776–790

    Article  CAS  Google Scholar 

  58. McAnulty MJ, Yen JY, Freedman BG, Senger RS (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Sys Biol 6:42

    Article  CAS  Google Scholar 

  59. Goyal N, Widiastuti H, Karimi IA, Zhou Z (2014) A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol Biosyst 10(5):1043–54

    Article  CAS  Google Scholar 

  60. Wu X, Wang X, Lu W (2014) Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Biosystems 117:10–14

    Article  CAS  Google Scholar 

  61. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    Article  CAS  Google Scholar 

  62. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  CAS  Google Scholar 

  63. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, Forum SBML (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–31

    Article  CAS  Google Scholar 

  64. Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  CAS  Google Scholar 

  65. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  CAS  Google Scholar 

  66. Schilling CH, Edwards JS, Letscher D, Palsson BØ (2001) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71(4):286–310

    Article  CAS  Google Scholar 

  67. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10):5528–5533

    Article  CAS  Google Scholar 

  68. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  Google Scholar 

  69. Schellenberger J, Lewis NE, Palsson BØ (2011) Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 100(3):544–553

    Article  CAS  Google Scholar 

  70. Smallbone K, Simeonidis E (2009) Flux balance analysis: A geometric perspective. J Theor Biol 258(2):311–315

    Article  Google Scholar 

  71. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  Google Scholar 

  72. Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:1–10

    Article  CAS  Google Scholar 

  73. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    Article  CAS  Google Scholar 

  74. Fleming RMT, Thiele I, Provan G, Nasheuer HP (2010) Integrated stoichiometric, thermodynamic and kinetic modelling of steady-state metabolism. J Theor Biol 264(3):683–692

    Article  CAS  Google Scholar 

  75. Müller AC, Bockmayr A (2013) Fast thermodynamically constrained flux variability analysis. Bioinformatics 29(7):903–909

    Article  CAS  Google Scholar 

  76. Holzhütter H (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271:2905–2922

    Article  CAS  Google Scholar 

  77. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22(5):245–52

    Article  CAS  Google Scholar 

  78. Rabinowitz JD (2007) Cellular metabolomics of Escherichia coli. Expert Rev Proteomics 4(2):187–198

    Article  CAS  Google Scholar 

  79. Gancedo JM, Gancedo C (1973) Concentrations of intermediary metabolites in yeast. Biochemie 55:205–211

    Article  CAS  Google Scholar 

  80. Lowry OH, Carter J, Ward JB, Glaser L (1971) The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J Biol Chem 246:6511–6521

    CAS  Google Scholar 

  81. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of E. coli as revealed by global metabolite pool (“Metabolome”) analysis. J Bacteriol 180(19):5109–5116

    CAS  Google Scholar 

  82. Cotten C, Reed JL (2013) Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. BMC Bioinformatics 14:32

    Article  Google Scholar 

  83. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial Metabolomics: Past, present and future methodologies. Biotechnol Lett 29(1):1–16

    Article  CAS  Google Scholar 

  84. Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12(5):327–40

    Article  CAS  Google Scholar 

  85. Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1243–1259

    Article  CAS  Google Scholar 

  86. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral PH. Anal Biochem 204:118–123

    Article  Google Scholar 

  87. Schadel F, Franco-Lara E (2009) Rapid sampling devices for metabolic engineering applications. Appl Microbiol Biotechnol 83(2):199–208

    Article  CAS  Google Scholar 

  88. Lange HC, Eman M, van Zuijlen G, Visser D, van Dam J, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces Cerevisiae. Biotechnol Bioeng 75(4):406–415

    Article  CAS  Google Scholar 

  89. Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22:1434–1442

    Article  CAS  Google Scholar 

  90. Hiller J, Franco-Lara E, Papaioannou V, Weuster-Botz D (2007) Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnol Lett 29(8):1161–1167

    Article  CAS  Google Scholar 

  91. McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BØ, Feist AM (2014) A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. Coli K-12 Mg1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng 111(4):803–815

    Article  CAS  Google Scholar 

  92. Larsson G, Törnkvist M (1996) Rapid sampling cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivations. J Biotech 49:69–82

    Article  CAS  Google Scholar 

  93. Weuster-Botz D (1997) Sampling tube device for monitoring intracellular metabolite dynamics. Anal Chem 246:225–233

    CAS  Google Scholar 

  94. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Chem 270:88–96

    CAS  Google Scholar 

  95. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79(10):3843–3849

    Article  CAS  Google Scholar 

  96. Link H, Buescher JM, Sauer U (2012) Targeted and quantitative metabolomics in bacteria. In: Wipat A, Harwood C (eds) Systems biology of bacteria. Elsevier, Amsterdam

    Google Scholar 

  97. da Luz JA, Hans E, Zeng AP (2014) Automated fast filtration and on-filter quenching improve the intracellular metabolite analysis of microorganisms. Eng Life Sci 14:135–142

    Article  CAS  Google Scholar 

  98. Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R (2008) Global metabolic profiling of Escherichia Coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80(8):2939–2948

    Article  CAS  Google Scholar 

  99. Link H, Anselment B, Weuster-Botz D (2008) Leakage of adenylates during cold methanol/glycerol quenching of Escherichia Coli. Metabolomics 4(3):240–247

    Article  CAS  Google Scholar 

  100. Taymaz-Nikerel H, de Mey M, Ras C, ten Pierick A, Seifar RM, van Dam JC, Heijnen JJ, van Gulik WM (2009) Development and application of a differential method for reliable metabolome analysis in Escherichia Coli. Anal Biochem 386(1):9–19

    Article  CAS  Google Scholar 

  101. van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21(1):27–34

    Article  CAS  Google Scholar 

  102. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia Coli. Anal Chem 79:6167–6173

    Article  CAS  Google Scholar 

  103. Paczia N, Nilgen A, Lehmann T, Gatgens J, Wiechert W, Noack S (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact 11(1):122

    Article  CAS  Google Scholar 

  104. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49(7):1041–1044

    Article  CAS  Google Scholar 

  105. Jaki BU, Franzblau SG, Cho SH, Pauli GF (2006) Development of an extraction method for mycobacterial metabolome analysis. J Pharm Biomed Anal 41(1):196–200

    Article  CAS  Google Scholar 

  106. Link H (2009) ‘Rapid media transition’ for metabolic control analysis of fed-batch fermentation processes. Ph.D thesis, Technische Universität München.

    Google Scholar 

  107. Zimmermann M, Sauer U, Zamboni N (2014) Quantification and mass isotopomer profiling of alpha-keto acids in central carbon metabolism. Anal Chem 86(6):3232–7

    Article  CAS  Google Scholar 

  108. Weiner M, Tröndle J, Schmideder A, Binder K, Albermann C, Sprenger GA, Weuster-Botz D (2015) Parallelized small-scale production of uniformly 13C-labeled cell-extract for quantitative metabolome analysis. Anal Biochem 478:134–140

    Google Scholar 

  109. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C-13-labeled cell extracts as internal standards. Anal Biochem 336(2):164–171

    Article  CAS  Google Scholar 

  110. Bochner BR, Ames BN (1982) Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257(16):9759–9769

    CAS  Google Scholar 

  111. Dunn WB (2011) Mass spectrometry in systems biology an introduction. Methods Enzymol 500:15–35

    Article  CAS  Google Scholar 

  112. Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, Keasling JD (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11(3):233–239

    Article  CAS  Google Scholar 

  113. Buescher JM, Czernik D, Ewald JC, Sauer U, Zamboni N (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81(6):2135–2143

    Article  CAS  Google Scholar 

  114. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82(11):4403–4412

    Article  CAS  Google Scholar 

  115. Bingol K, Bruschweiler R (2014) Multidimensional approaches to NMR-Based metabolomics. Anal Chem 86(1):47–57

    Article  CAS  Google Scholar 

  116. Fuhrer T, Heer D, Begemann B, Zamboni N (2011) High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal Chem 83(18):7074–7080

    Article  CAS  Google Scholar 

  117. Hsu CC, ElNaggar MS, Peng Y, Fang J, Sanchez LM, Mascuch SJ, Moller KA, Alazzeh EK, Pikula J, Quinn RA, Zeng Y, Wolfe BE, Dutton RJ, Gerwick L, Zhang L, Liu X, Mansson M, Dorrestein PC (2013) Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal Chem 85(15):7014–8

    Article  CAS  Google Scholar 

  118. Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabol Eng 3(4):289–300

    Article  CAS  Google Scholar 

  119. Sprenger GA (2007) From scratch to value: engineering Escherichia Coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75(4):739–749

    Article  CAS  Google Scholar 

  120. Choi YJ, Tribe DE (1982) Continuous production of phenylalanine using an Escherichia-Coli regulatory mutant. Biotechnol Lett 4(4):223–228

    Article  CAS  Google Scholar 

  121. Forberg C, Haggstrom L (1988) Phenylalanine production from a rec Escherichia-Coli strain in fed-batch culture. J Biotechnol 8(4):291–300

    Article  Google Scholar 

  122. Park NH, Rogers PL (1986) L-phenylalanine production in continuous culture using a hyperproducing mutant of Escherichia-Coli-K-12. Chem Eng Commun 45(1–6):185–196

    Article  CAS  Google Scholar 

  123. Ozaki A, Katsumata R, Oka T, Furuya A (1985) Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium Glutamicum and its application to breeding of a phenylalanine producing strain. Agric Biol Chem 49(10):2925–2930

    Article  CAS  Google Scholar 

  124. Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69(6):615–626

    Article  CAS  Google Scholar 

  125. Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 589:16–24

    Article  CAS  Google Scholar 

  126. Rüffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R (2004) Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng 26:239–248

    Article  CAS  Google Scholar 

  127. Konstantinov KB, Nishio N, Seki T, Yoshida T (1991) Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J Ferment Bioeng 71:350–355

    Article  CAS  Google Scholar 

  128. Liu SP, Xiao MR, Zhang L, Xu J, Ding ZY, Gu ZH, Shi GY (2013) Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Proc Biochem 48:413–419

    Article  CAS  Google Scholar 

  129. Zhou H, Liao X, Wang T, Du G, Chen J (2010) Enhanced L-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt. Bioresour Technol 101:4151–4156

    Article  CAS  Google Scholar 

  130. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39(2):217–226

    Article  CAS  Google Scholar 

  131. Gottlieb K, Albermann C, Sprenger GA (2014) Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX and tktA genes. Microb Cell Fact 13(1):96

    Article  CAS  Google Scholar 

  132. Thongchuang M, Pongsawasdi P, Chisti Y, Packdibamrung K (2012) Design of a recombinant Escherichia Coli for producing L-phenylalanine from glycerol. World J Microbiol Biotechnol 28(10):2937–43

    Article  CAS  Google Scholar 

  133. Weiner M, Tröndle J, Albermann C, Sprenger GA, Weuster-Botz D (2014) Carbon storage in recombinant Escherichia Coli during growth on glycerol and lactic acid. Biotechnol Bioeng 111(12):2508–2519

    Google Scholar 

  134. Weiner M, Albermann C, Gottlieb K, Sprenger GA, Weuster-Botz D (2014) Fed-batch production of L-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochem Eng J 83:62–69

    Article  CAS  Google Scholar 

  135. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002) Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80(7):746–754

    Article  CAS  Google Scholar 

  136. Jenzsch M, Gnoth S, Beck M, Kleinschmidt M, Simutis R, Lübbert A (2006) Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. J Biotech 127:84–94

    Article  CAS  Google Scholar 

  137. Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63(2):761–762

    CAS  Google Scholar 

  138. Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401

    Article  CAS  Google Scholar 

  139. Schürmann M, Sprenger GA (2001) Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 276:11055–11061

    Article  Google Scholar 

  140. Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 22, 8(6):562–568.

    Google Scholar 

  141. Kotlarz D, Buc H (1982) Phosphofructokinases from Escherichia coli. Methods Enzymol 90:60–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of the German Research Foundation DFG (Grant numbers WE 2715/11-1, SP 503/7-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiner, M., Tröndle, J., Albermann, C., Sprenger, G.A., Weuster-Botz, D. (2015). Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors. In: Bao, J., Ye, Q., Zhong, JJ. (eds) Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2015_326

Download citation

Publish with us

Policies and ethics