Skip to main content

Trait Mapping Approaches Through Linkage Mapping in Plants

  • Chapter
  • First Online:
Plant Genetics and Molecular Biology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 164))

Abstract

Quantitative trait loci (QTL) mapping in crop plants has now become a common practice due to the advances made in the area of molecular markers as well as that of statistical genomics. Consequently, large numbers of QTLs have been identified in different crops for a variety of traits. Several computational tools are now available that suit the type of mapping population and the trait(s) to be studied for QTL analyses as well as the objective of the program. These methods are comprised of simpler approaches like single marker analysis and simple interval mapping to relatively exhaustive inclusive composite interval mapping and Bayesian interval mapping. The relative significance of each of these methods varies considerably. The progress made in the area of computational analysis involving the identification of QTLs either through interval mapping or association mapping is unprecedented, and it is expected that it will continue to evolve over the coming years. An overview of the different methods of linkage-based QTL analysis is provided in this chapter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB-QTL:

Advanced backcross QTL

AM:

Association mapping

BSA:

Bulk segregant analysis

CIM:

Composite interval mapping

DH:

Doubled haploid

EM algorithm:

Expectation maximization algorithm

eQTL:

Expression QTL

GLM:

General linear model

GS:

Genomic selection

GWAS:

Genome wide association studies

ICIM:

Inclusive composite interval mapping

IM:

Interval mapping

JLAM:

Joint linkage-association mapping

LD:

Linkage disequilibrium

MAGIC:

Multi-parent advanced generation intercross

MAS:

Marker-assisted selection

MCILs:

Multiline cross-inbred lines

MIM:

Multiple interval mapping

M-QTL:

Main effect QTL

mQTL:

Metabolite QTL

MTA:

Marker-trait association

MTMIM:

Multiple-trait multiple interval mapping

NAM:

Nested association mapping

pQTL:

Protein QTL

QDR:

Quantitative disease resistance

QE:

QTL × environment interactions

QQ:

QTL × QTL interactions

QQE:

QTL × QTL × environment interactions

QRL:

Quantitative resistance loci

QTL:

Quantitative trait loci

RIAILs:

Recombinant inbred advanced intercross lines

SIM:

Simple interval mapping

SMA:

Single marker analysis

TFM:

Time-fixed mapping

TRM:

Time-related mapping

References

  1. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Gupta PK, Kulwal PL, Mir RR (2013) QTL mapping: methodology and applications in cereal breeding. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp 275–318

    Chapter  Google Scholar 

  3. Kulwal PL, Thudi M, Varshney RK (2012) Genomics interventions in crop breeding for sustainable agriculture. In: Meyers RA (ed) Encyclopedia of sustainability science and technology, vol I. Springer, New York, pp 2527–2540

    Chapter  Google Scholar 

  4. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  5. Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research? Trends Plant Sci 20:380–387

    Article  PubMed  CAS  Google Scholar 

  6. Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  7. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  8. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  9. Frommlet F, Bogdan M, Ramsey D (2016) Statistical methods of QTL mapping for experimental populations. Phenotypes and genotypes. Springer, London, pp 73–104

    Chapter  Google Scholar 

  10. Gupta PK, Kulwal PL (2006) Methods of QTL analysis in crop plants: present status and future prospects. In: Trivedi PC (ed) Biotechnology and biology of plants. Avishkar Publishers, Jaipur, pp 1–23

    Google Scholar 

  11. Hackett CA (2002) Statistical methods of QTL mapping in cereals. Plant Mol Biol 48:585–599

    Article  PubMed  CAS  Google Scholar 

  12. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 33:303–339

    Article  Google Scholar 

  13. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  PubMed  CAS  Google Scholar 

  14. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  15. Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev 15:85–139

    CAS  Google Scholar 

  16. Michelmore WR, Paran I, Kesseli RV (1991) Identification of marker linked to disease resistance genes by bulked segregant analysis, a rapid method to detect the markers in specific genetic region by using the segregating population. Proc Natl Acad Sci U S A 88:9828–9832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vikram P, Swamy BM, Dixit S, Ahmed H, Cruz MS, Singh AK, Ye G, Kumar A (2012) Bulk segregant analysis: “an effective approach for mapping consistent-effect drought grain yield QTLs in rice”. Field Crops Res 134:185–192

    Article  Google Scholar 

  18. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  PubMed  CAS  Google Scholar 

  19. Kujur A, Bajaj D, Saxena M, Tripathi S, Upadhyaya H et al (2014) An efficient and cost-effective approach for genic microsatellite marker-based large scale trait association mapping: identification of candidate genes for seed weight in chickpea. Mol Breed 34:241–265

    Article  CAS  Google Scholar 

  20. Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 30:44–52

    CAS  Google Scholar 

  21. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  23. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–92

    CAS  Google Scholar 

  30. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  31. Pang X, Wang Z, Yap JS, Wang J, Zhu J, Bo W, Lv Y, Xu F, Zhou T, Peng S, Shen D (2013) A statistical procedure to map high-order epistasis for complex traits. Brief Bioinform 14:302–314

    Article  PubMed  CAS  Google Scholar 

  32. Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101

    Article  PubMed  CAS  Google Scholar 

  34. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Laurie C, Wang S, Carlini-Garcia LA, Zeng Z-B (2014) Mapping epistatic quantitative trait loci. BMC Genet 15:112

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

    Google Scholar 

  37. Huang A, Xu S, Cai X (2014) Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice. PLoS One 9:e87330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sandhu N, Singh A, Dixit S, Cruz MT, Maturan PC, Jain RK, Kumar A (2014) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet 15:63

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kulwal PL, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK (2005) Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics 5:254–259

    Article  PubMed  CAS  Google Scholar 

  40. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL analysis for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  41. Xing W, Zhao H, Zou D (2014) Detection of main-effect and epistatic QTL for yield-related traits in rice under drought stress and normal conditions. Can J Plant Sci 94:633–641

    Article  Google Scholar 

  42. Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ, Tongoona P, Myburg AA (2014) Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina. BMC Genet 15:60

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708

    Article  Google Scholar 

  44. Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36:93–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bocianowski J (2014) Estimation of epistasis in doubled haploid barley populations considering interactions between all possible marker pairs. Euphytica 196:105–115

    Article  Google Scholar 

  46. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140:1137–1147

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Korol AB, Ronin YI, Nevo E, Hays PM (1998) Multi-interval mapping of correlated trait complexes. Heredity 80:273–284

    Article  Google Scholar 

  49. Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL analysis for growth and leaf characters in bread wheat. Plant Sci 164:267–277

    Article  CAS  Google Scholar 

  50. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011) Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66

    Article  PubMed  CAS  Google Scholar 

  51. Silva LDCE, Wang S, Zeng Z-B (2012) Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses. BMC Genet 13:67

    Article  Google Scholar 

  52. Chen Z (2013) Statistical methods for QTL mapping. CRC Press, Boca Raton, pp 1–308

    Google Scholar 

  53. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523

    Article  PubMed  CAS  Google Scholar 

  55. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10:681–690

    Article  PubMed  CAS  Google Scholar 

  56. Kärkkäinen HP, Sillanpää MJ (2012) Back to basics for Bayesian model building in genomic selection. Genetics 191:969–987

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun X, Habier D, Fernando RL, Garrick DJ, Dekkers JC (2011) Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian methods. BMC Proc 5:1

    Google Scholar 

  58. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics 144:805–816

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155:1391–1403

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Yi N, Banerjee S, Pomp D, Yandell BS (2007) Bayesian mapping of genomewide interacting quantitative trait loci for ordinal traits. Genetics 176:1855–1864

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meyer da Silva A, Leandro RA, Garcia AA, de Souza AP (2013) A Bayesian approach to map QTL and to detect epistatic effects in a maize population. Rev Bras Biom 31:558–581

    Google Scholar 

  62. Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  PubMed  CAS  Google Scholar 

  63. Yi N, Xu S, Allison DB (2003) Bayesian model choice and search strategies for mapping interacting quantitative trait loci. Genetics 165:867–883

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Kopp A, Graze RM, Xu S, Carroll SB, Nuzhdin SV (2003) Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics 163:771–787

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Bauer AM, Hoti F, Von Korff M, Pillen K, Léon J, Sillanpää MJ (2009) Advanced backcross-QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet 119:105–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yi N, Shriner D (2008) Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses. Heredity 100:240–252

    Article  PubMed  CAS  Google Scholar 

  67. Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179:2275–2289

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xu C, Wang X, Li Z, Xu S (2009) Mapping QTL for multiple traits using Bayesian statistics. Genet Res 91:23–37

    Article  CAS  Google Scholar 

  69. Balestre M, Von Pinho RG, de Souza Junior CL, de Sousa Bueno Filho JS (2012) Bayesian mapping of multiple traits in maize: the importance of pleiotropic effects in studying the inheritance of quantitative traits. Theor Appl Genet 125:479–493

    Article  PubMed  Google Scholar 

  70. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet 15:354–358

    Article  PubMed  CAS  Google Scholar 

  71. Wu W-R, Li W-M, Tang D-Z, Lu H-R, Worland AJ (1999) Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297–303

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Wu R, Lin M (2006) Functional mapping-how to map and study the genetic architecture of dynamic complex traits. Nat Genet 7:229–237

    Article  Google Scholar 

  73. Kulwal PL, Ishikawa G, Benscher D, Feng Z, Yu L-X, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805

    Article  PubMed  CAS  Google Scholar 

  74. Takai T, Yoshimichi F, Tatsuhiko S, Takeshi H (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.) J Exp Bot 56:2107–2118

    Article  PubMed  CAS  Google Scholar 

  75. Cheng X, Cheng J, Huang X, Lai Y, Wang L et al (2013) Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice. PLoS One 8:e80002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Osman KA, Tang B, Wang Y, Chen J, Yu F et al (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8:e79305. https://doi.org/10.1371/journal.pone.0079305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Würschum T, Liu W, Busemeyer L, Tucker MR, Reif JC, Weissmann EA, Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL for plant height in triticale. BMC Genet 15:59

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li Z, Sillanpää MJ (2013) A Bayesian nonparametric approach for mapping dynamic quantitative traits. Genetics 194:997–1016

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hackett CA, Weller JI (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51:1252–1263

    Article  PubMed  CAS  Google Scholar 

  80. Xu S, Atchley WR (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143:1417–1424

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Rao S, Xu S (1998) Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity 81:214–224

    Article  PubMed  Google Scholar 

  82. Xu S, Xu C (2006) A multivariate model for ordinal trait analysis. Heredity 97:409–417

    Article  PubMed  CAS  Google Scholar 

  83. Li J, Wang S, Zeng ZB (2006) Multiple-interval mapping for ordinal traits. Genetics 173:1649–1663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Feng J-Y, Zhang J, Zhang W-J, Wang S-B, Han S-F et al (2013) An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars. PLoS One 8(4):e59541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Danan S, Jean-Baptiste V, Véronique L (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu XL, Hu ZL (2012) Meta-analysis of QTL mapping experiments. In: Quantitative trait loci (QTL) methods and protocols, pp 145–171

    Google Scholar 

  87. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Lanaud C, Fouet O, Clément D, Boccara M, Risterucci AM, Surujdeo-Maharaj S, Legavre T, Argout X (2009) A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24:361–374

    Article  Google Scholar 

  90. Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL et al (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Swamy BM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:319

    Article  PubMed  PubMed Central  Google Scholar 

  93. Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  94. Zhang H, Uddin MS, Zou C, Xie C, Xu Y, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Integr Plant Biol 56:262–270

    Article  PubMed  CAS  Google Scholar 

  95. Qi Z, Sun Y, Wu Q, Liu C, Hu G, Chen Q (2011) A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 91:221–230

    Article  CAS  Google Scholar 

  96. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  97. Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meat-analysis of QTL mapping experiments. BMC Bioinformatics 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Joosen RVL, Ligterink W, Hilhorst HWM, Keurentjes JJB (2009) Advances in genetical genomics of plants. Curr Genomics 10:540–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  PubMed  CAS  Google Scholar 

  100. Breitling R, Li Y, Tesson BM, Fu J, Wu C et al (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4:e1000232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jansen RC, Tesson BM, Fu J, Yang Y, McIntyre LM (2009) Defining gene and QTL networks. Curr Opin Plant Biol 12:241–246

    Article  PubMed  CAS  Google Scholar 

  102. Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    Article  PubMed  CAS  Google Scholar 

  103. Kliebenstein DJ (2007) Metabolomics and plant quantitative trait locus analysis—the optimum genetical genomics platform? In: Nikolau BJ, Wurtele ES (eds) Concepts in plant metabolomics. Springer, Dordrecht, pp 29–44

    Chapter  Google Scholar 

  104. Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  PubMed  CAS  Google Scholar 

  105. Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, Kleessen S, Giavalisco P, Pleban T, Mueller-Roeber B, Zamir D (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Eckardt NA (2008) Epistasis and genetic regulation of variation in the Arabidopsis metabolome. Plant Cell 20:1185–1186

    Article  CAS  PubMed Central  Google Scholar 

  107. Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, Fiehn O, Törjék O, Selbig J, Altmann T et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CW, Mumm R, Bouwmeester H, Visser RG, Keurentjes JJ (2012) Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol 158:1306–1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  PubMed  CAS  Google Scholar 

  110. Hill CB, Taylor JD, Edwards J, Mather D, Langridge P, Bacic A, Roessner U (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  PubMed  CAS  Google Scholar 

  111. Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38

    Article  PubMed  CAS  Google Scholar 

  112. Li Y, Breitling R, Jansen RC (2008) Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet 24:518–524

    Article  PubMed  CAS  Google Scholar 

  113. Joosen RV, Arends D, Li Y, Willems LA, Keurentjes JJ, Ligterink W, Jansen RC, Hilhorst HW (2013) Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics. Plant Physiol 162:553–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147

    PubMed  CAS  Google Scholar 

  115. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  116. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  117. Wu R, Zeng ZB (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899–909

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  119. Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  120. Huang A, Xu S, Cai X (2015) Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 114:107–115

    Article  PubMed  CAS  Google Scholar 

  121. Meuwissen TH, Goddard ME (2004) Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol 36:261–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Stich B, Piepho H-P, Schulz B, Melchinger AE (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.) Theor Appl Genet 117:947–954

    Article  PubMed  Google Scholar 

  123. Wu R, Chang-Xing M, George C (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779–792

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J-M, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci U S A 107:19585–19590

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li N, Shi J, Wang X, Liu G, Wang H (2014) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.) BMC Plant Biol 14:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

  127. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  PubMed  CAS  Google Scholar 

  128. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 11:21–29

    Article  CAS  Google Scholar 

  129. St. Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  PubMed  CAS  Google Scholar 

  130. Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  131. Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007) Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Mol Plant Microbe Interact 20:1604–1615

    Article  PubMed  CAS  Google Scholar 

  132. Miklas PN (2007) Marker-assisted backcrossing QTL for partial resistance to Sclerotinia white mold in dry bean. Crop Sci 47:935–942

    Article  CAS  Google Scholar 

  133. Toojinda T, Baird E, Booth A, Broers L, Hayes P et al (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  134. Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.) Plant Breed 124:282–288

    Article  Google Scholar 

  135. Wilde F, Schon CC, Korzun V, Ebmeyer E, Schmolke M et al (2008) Marker-based introduction of three quantitative-trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29–35

    Article  PubMed  CAS  Google Scholar 

  136. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  137. Thabuis A, Palloix A, Servin B, Daubeze A-M, Signoret P et al (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20

    Article  CAS  Google Scholar 

  138. Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM et al (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  139. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  140. Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:90–99

    Article  CAS  Google Scholar 

  141. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  142. Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.) BMC Genet 13:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Chai L, Zhang J, Pan XB, Zhang F, Zheng TQ, Zhao XQ, Wang WS, Jauhar A, Xu JL, Li ZK (2014) Advanced backcross QTL analysis for the whole plant growth duration salt tolerance in rice (Oryza sativa L.). J Integ Agric 13:1609–1620

    Google Scholar 

  144. Nagata K, Ando T, Nonoue Y, Mizubayashi T, Kitazawa N, Shomura A, Matsubara K, Ono N, Mizobuchi R, Shibaya T, Ogiso-Tanaka E (2015) Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breed Sci 65:308–318

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sellamuthu R, Ranganathan C, Serraj R (2015) Mapping QTLs for reproductive-stage drought resistance traits using an advanced backcross population in upland rice. Crop Sci 55:1524–1536

    Article  CAS  Google Scholar 

  146. Burow MD, Starr JL, Park C-H, Simpson CE, Paterson AH (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.) Mol Breed 34:393–406

    Article  CAS  Google Scholar 

  147. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Li H, Hearne S, Banziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267

    Article  PubMed  CAS  Google Scholar 

  149. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  151. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  152. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  153. Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R (2012) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Shi LY, Hao ZF, Weng JF, Xie CX, Liu CL, Zhang DG, Li MS, Bai L, Li XH, Zhang SH (2011) Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Mol Breed 30:615–625

    Article  CAS  Google Scholar 

  156. Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6:e17595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T (2013) High-density genotyping: an overkill for QTL mapping? Lessons learned from a Case study in maize and simulations. Theor Appl Genet 126:2563–2574

    Article  PubMed  CAS  Google Scholar 

  158. Lincoln S, Daly M, Lander E (1993) Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1, 2nd edn. Whitehead Institute for Biomedical Research, Technical report

    Google Scholar 

  159. Knapp SJ, Bridges WC (1990) Using molecular markers to estimate quantitative trait locus parameters; power and genetic variances for unreplicated and replicated progeny. Genetics 126:769–777

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci 1:2

    Google Scholar 

  161. Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1

    Google Scholar 

  162. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  163. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Berry CC (1998) Computationally efficient Bayesian QTL mapping in experimental crosses. In: ASA proceedings of the biometrics section, pp 164–169

    Google Scholar 

  166. Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QTL. Mamm Genome 10:327–334

    Article  PubMed  CAS  Google Scholar 

  167. Sen Ś, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    Article  PubMed  CAS  Google Scholar 

  169. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  170. Seaton G, Hernandez J, Grunchec JA, White I, Allen J, De Koning DJ, Wei W, Berry D, Haley C, Knott S (2006) GridQTL: a grid portal for QTL mapping of compute intensive datasets. In: Proceedings of the 8th world congress on genetics applied to livestock production. Belo Horizonte

    Google Scholar 

  171. Isobe S, Nakaya A, Tabata S (2007) Genotype matrix mapping: searching for quantitative trait loci interactions in genetic variation in complex traits. DNA Res 14:217–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Yandell BS, Mehta T, Banerjee S, Shriner D, Venkataraman R, Moon JY, Neely WW, Wu H, Von Smith R, Yi N (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23:641–643

    Article  PubMed  CAS  Google Scholar 

  173. Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96

    Article  Google Scholar 

  174. van Ooijen JW (2009) MapQTLR 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen

    Google Scholar 

  175. Alberts R, Schughart K (2010) QTLminer: identifying genes regulating quantitative traits. BMC Bioinformatics 11:516

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235

    Article  CAS  Google Scholar 

  177. Nelson RM, Nettelblad C, Pettersson ME, Shen X, Crooks L, Besnier F, Álvarez-Castro JM, Rönnegård L, Ek W, Sheng Z, Kierczak M (2013) MAPfastR: quantitative trait loci mapping in outbred line crosses. G3: Genes Genom Genet 3:2147–2149

    Article  Google Scholar 

  178. Ye C, Jiang B, Zhang X, Liu JS (2015) dslice: an R package for nonparametric testing of associations with application in QTL and gene set analysis. Bioinformatics 31:1842–1844

    Article  PubMed  CAS  Google Scholar 

  179. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O (2015) Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32(10):1479–1485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Ziyatdinov A, Brunel H, Martinez-Perez A, Buil A, Perera A, Soria JM (2016) solarius: an R interface to SOLAR for variance component analysis in pedigrees. Bioinformatics 32(12):1901–1902

    Article  PubMed  CAS  Google Scholar 

  181. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan L. Kulwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulwal, P.L. (2018). Trait Mapping Approaches Through Linkage Mapping in Plants. In: Varshney, R., Pandey, M., Chitikineni, A. (eds) Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, vol 164. Springer, Cham. https://doi.org/10.1007/10_2017_49

Download citation

Publish with us

Policies and ethics