Skip to main content

Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Abstract

The Na+-Ca2+ exchanger (NCX) is critical for Ca2+ homeostasis throughout the body. Of the three isoforms in the NCX family, NCX1 has been extensively studied, providing a good basis for understanding the molecular aspects of the NCX family, including structural resemblances, stoichiometry, and mechanism of exchange. However, the tissue expression of the third isoform of the family, NCX3, together with its proposed involvement in the Ca2+ fluxes of the endoplasmic reticulum and the mitochondria suggests a distinctive role for this isoform. Investigations of the exchanger revealed the involvement of NCX3 in diverse processes such as bone formation, TNF-α production, slow-twitch muscle contraction, and long-term potentiation in the hippocampus. Furthermore, the study of its posttranslational modification, its cleavage by the Ca2+-sensitive protease, calpain, and its upregulation in numerous stress conditions linked NCX3 to the aberrant Ca2+ influx seen during neuronal excitotoxicity in Alzheimer’s disease, brain stroke, and neuronal injuries. Hence, beyond its role in calcium homeostasis, NCX3 plays an important role in stress conditions, neuronal excitotoxicity, and metabolism and is thereby a key element in many cell types. The present review aims to survey the knowledge on NCX3, focusing on the recent discoveries on its functional and structural properties, and discusses the implications of NCX3 in both physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

1–42 :

Amyloid peptide 1–42

CBD:

Calcium-binding domain

CLD:

Catenin-like domain

DMD:

Duchenne muscular dystrophy

ER:

Endoplasmic reticulum

FDB:

Flexor digitorum brevis

ICC:

Interstitial cell of Cajal

LGMD2A:

Limb-girdle muscular dystrophy 2A

LTP:

Long-term potentiation

NCX:

Na+-Ca2+ exchanger

NMJ:

Neuromuscular junction

PIP2 :

Phosphatidylinositol-4,5-phosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

SOCE:

Store-operated Ca2+ entry

SR:

Sarcoplasmic reticulum

TNF-α:

Tumor necrosis factor-alpha

References

  • Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G, Annunziato L (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Aneiros E, Philipp S, Lis A, Freichel M, Cavalie A (2005) Modulation of Ca2+ signaling by Na+/Ca2+ exchangers in mast cells. J Immunol 174:119–130

    Article  CAS  PubMed  Google Scholar 

  • Araujo IM, Carreira BP, Pereira T et al (2007) Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death Differ 14:1635–1646. doi:10.1038/sj.cdd.4402171

    Article  CAS  PubMed  Google Scholar 

  • Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53. doi:10.1161/01.RES.0000080932.98903.D801.RES.0000080932.98903.D8

  • Ashley CC, Ellory JC, Hainaut K (1974) Calcium movements in single crustacean muscle fibres. J Physiol 242:255–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atherton J, Kurbatskaya K, Bondulich M et al (2014) Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Abeta in Alzheimer’s disease. Aging Cell 13:49–59. doi:10.1111/acel.12148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker PF, Glitsch HG (1973) Does metabolic energy participate directly in the Na+−dependent extrusion of Ca2+-Ca2+ ions from squid giant axons? J Physiol 233:44P–46P

    CAS  PubMed  Google Scholar 

  • Baker PF, McNaughton PA (1976) Kinetics and energetics of calcium efflux from intact squid giant axons. J Physiol 259:103–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200:431–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285. doi:10.1016/j.cell.2004.11.049

    Article  CAS  PubMed  Google Scholar 

  • Beauge L, Asteggiano C, Berberian G (2002) Regulation of phosphatidylinositol-4,5-biphosphate bound to the bovine cardiac Na+/Ca2+ exchanger. Ann N Y Acad Sci 976:288–299

    Article  CAS  PubMed  Google Scholar 

  • Berberian G, Forcato D, Beauge L (2009) Key role of a PtdIns-4,5P2 micro domain in ionic regulation of the mammalian heart Na+/Ca2+ exchanger. Cell Calcium 45:546–553. doi:10.1016/j.ceca.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  • Blaustein MP, Santiago EM (1977) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20:79–111. doi:10.1016/S0006-3495(77)85538-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaustein MP, Juhaszova M, Golovina VA, Church PJ, Stanley EF (2002) Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann N Y Acad Sci 976:356–366

    Article  CAS  PubMed  Google Scholar 

  • Boscia F, Gala R, Pignataro G et al (2006) Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26:502–517. doi:10.1038/sj.jcbfm.9600207

    Article  CAS  PubMed  Google Scholar 

  • Boscia F, D'Avanzo C, Pannaccione A et al (2012) Silencing or knocking out the Na(+)/Ca(2+) exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ 19:562–572. doi:10.1038/cdd.2011.125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boscia F, D'Avanzo C, Pannaccione A et al (2013) New roles of NCX in glial cells: activation of microglia in ischemia and differentiation of oligodendrocytes. Adv Exp Med Biol 961:307–316. doi:10.1007/978-1-4614-4756-6_26

    Article  CAS  PubMed  Google Scholar 

  • Boyman L, Hagen BM, Giladi M, Hiller R, Lederer WJ, Khananshvili D (2011) Proton-sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J Biol Chem 286:28811–28820. doi:10.1074/jbc.M110.214106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breukels V, Konijnenberg A, Nabuurs SM, Touw WG, Vuister GW (2011) The second Ca(2+)-binding domain of NCX1 binds Mg2+ with high affinity. Biochemistry 50:8804–8812. doi:10.1021/bi201134u

    Article  CAS  PubMed  Google Scholar 

  • Breukels V, Touw WG, Vuister GW (2012a) NMR structure note: solution structure of Ca(2)(+) binding domain 2B of the third isoform of the Na(+)/Ca(2)(+) exchanger. J Biomol NMR 54:115–121. doi:10.1007/s10858-012-9654-1

    Article  CAS  PubMed  Google Scholar 

  • Breukels V, Touw WG, Vuister GW (2012b) Structural and dynamic aspects of Ca2+ and Mg2+ binding of the regulatory domains of the Na+/Ca2+ exchanger. Biochem Soc Trans 40:409–414. doi:10.1042/BST20110742

  • Chaptal V, Ottolia M, Mercado-Besserer G, Nicoll DA, Philipson KD, Abramson J (2009) Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger. J Biol Chem 284:14688–14692. doi:10.1074/jbc.C900037200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cross JL, Boulos S, Shepherd KL et al (2012) High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation. Neurosci Res 73:191–198. doi:10.1016/j.neures.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  • Davis KA, Samson SE, Hammel KE, Kiss L, Fulop F, Grover AK (2009) Functional linkage of Na+-Ca2+−exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 13:1775–1783. doi:10.1111/j.1582-4934.2008.00480.x

    Article  PubMed  Google Scholar 

  • Deval E, Levitsky DO, Constantin B, Raymond G, Cognard C (2000) Expression of the sodium/calcium exchanger in mammalian skeletal muscle cells in primary culture. Exp Cell Res 255:291–302. doi:10.1006/excr.1999.4781

    Article  CAS  PubMed  Google Scholar 

  • Deval E, Levitsky DO, Marchand E, Cantereau A, Raymond G, Cognard C (2002) Na(+)/Ca(2+) exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD. Neuromuscul Disord 12:665–673

    Article  PubMed  Google Scholar 

  • DiPolo R, Beauge L (1987) Characterization of the reverse Na/Ca exchange in squid axons and its modulation by Cai and ATP. Cai-dependent Nai/Cao and Nai/Nao exchange modes. J Gen Physiol 90:505–525

    Article  CAS  PubMed  Google Scholar 

  • DiPolo R, Beauge L (1988) Ca2+ transport in nerve fibers. Biochim Biophys Acta 947:549–569

    Article  CAS  PubMed  Google Scholar 

  • DiPolo R, Berberian G, Beauge L (2004) Phosphoarginine regulation of the squid nerve Na+/Ca2+ exchanger: metabolic pathway and exchanger-ligand interactions different from those seen with ATP. J Physiol 554:387–401. doi:10.1113/jphysiol.2003.050930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doering AE, Lederer WJ (1993) The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells. J Physiol 466:481–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doering AE, Lederer WJ (1994) The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na(+)-Ca2+ exchanger in the guinea-pig. J Physiol 480(Pt 1):9–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donnadieu E, Trautmann A (1993) Is there a Na+/Ca2+ exchanger in macrophages and in lymphocytes? Pflugers Arch 424:448–455

    Article  CAS  PubMed  Google Scholar 

  • Dyck C, Omelchenko A, Elias CL, Quednau BD, Philipson KD, Hnatowich M, Hryshko LV (1999) Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na(+)-Ca(2+) exchanger. J Gen Physiol 114:701–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisner DA, Lederer WJ (1985) Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol 248:C189–C202

    CAS  PubMed  Google Scholar 

  • Elbaz B, Alperovitch A, Gottesman MM, Kimchi-Sarfaty C, Rahamimoff H (2008) Modulation of Na+-Ca2+ exchanger expression by immunosuppressive drugs is isoform-specific. Mol Pharmacol 73:1254–1263. doi:10.1124/mol.107.041582

    Article  CAS  PubMed  Google Scholar 

  • Formisano L, Saggese M, Secondo A et al (2008) The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 73:727–737. doi:10.1124/mol.107.042549

    Article  CAS  PubMed  Google Scholar 

  • Fraysse B, Rouaud T, Millour M, Fontaine-Perus J, Gardahaut MF, Levitsky DO (2001) Expression of the Na(+)/Ca(2+) exchanger in skeletal muscle. Am J Physiol Cell Physiol 280:C146–C154

    CAS  PubMed  Google Scholar 

  • Gabellini N (2004) Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 30:91–116. doi:10.1385/MN:30:1:091

    Article  CAS  PubMed  Google Scholar 

  • Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E (2002) The human SLC8A3 gene and the tissue-specific Na+/Ca2+ exchanger 3 isoforms. Gene 298:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E (2003) Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J Neurochem 84:282–293

    Article  CAS  PubMed  Google Scholar 

  • Gerencser AA, Mark KA, Hubbard AE, Divakaruni AS, Mehrabian Z, Nicholls DG, Polster BM (2009) Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity. J Neurochem 110:990–1004. doi:10.1111/j.1471-4159.2009.06194.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Germinario E, Esposito A, Midrio M, Peron S, Palade PT, Betto R, Danieli-Betto D (2008) High-frequency fatigue of skeletal muscle: role of extracellular Ca(2+). Eur J Appl Physiol 104:445–453. doi:10.1007/s00421-008-0796-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giladi M, Khananshvili D (2013) Molecular determinants of allosteric regulation in NCX proteins. Adv Exp Med Biol 961:35–48. doi:10.1007/978-1-4614-4756-6_4

    Article  CAS  PubMed  Google Scholar 

  • Giladi M, Boyman L, Mikhasenko H, Hiller R, Khananshvili D (2010) Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J Biol Chem 285:28117–28125. doi:10.1074/jbc.M110.127001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giladi M, Bohbot H, Buki T, Schulze DH, Hiller R, Khananshvili D (2012) Dynamic features of allosteric Ca2+ sensor in tissue-specific NCX variants. Cell Calcium 51:478–485. doi:10.1016/j.ceca.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  • Giladi M, Lee SY, Hiller R, Chung KY, Khananshvili D (2015) Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem J 465:489–501. doi:10.1042/BJ20141036

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Villafuertes R, Torres B, Barrio J et al (2005) Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 25:10822–10830. doi:10.1523/JNEUROSCI. 3912-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Heise N, Shumilina E, Nurbaeva MK et al (2011) Effect of dexamethasone on Na+/Ca2+ exchanger in dendritic cells. Am J Physiol Cell Physiol 300:C1306–C1313. doi:10.1152/ajpcell.00396.2010

    Article  CAS  PubMed  Google Scholar 

  • Hilge M, Aelen J, Vuister GW (2006) Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol Cell 22:15–25. doi:10.1016/j.molcel.2006.03.008

  • Hilge M, Aelen J, Perrakis A, Vuister GW (2007) Structural basis for Ca2+ regulation in the Na+/Ca2+ exchanger. Ann N Y Acad Sci 1099:7–15. doi:10.1196/annals.1387.030

  • Hilge M, Aelen J, Foarce A, Perrakis A, Vuister GW (2009) Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc Natl Acad Sci U S A 106:14333–14338. doi:10.1073/pnas.0902171106

  • Hilgemann DW, Ball R (1996) Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  CAS  PubMed  Google Scholar 

  • Hilgemann DW, Collins A, Cash DP, Nagel GA (1991) Cardiac Na(+)-Ca2+ exchange system in giant membrane patches. Ann N Y Acad Sci 639:126–139

    Article  CAS  PubMed  Google Scholar 

  • Hilgemann DW, Matsuoka S, Nagel GA, Collins A (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100:905–932

    Article  CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Tort L (2001) Characterization of the relationship between Na+-Ca2+ exchange rate and cytosolic calcium in trout cardiac myocytes. Pflugers Arch 441:701–708

    Article  CAS  PubMed  Google Scholar 

  • Hu R, He ML, Hu H et al (2009) Characterization of calcium signaling pathways in human preadipocytes. J Cell Physiol 220:765–770. doi:10.1002/jcp.21823

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hove-Madsen L, Tibbits GF (2007) SR Ca2+ refilling upon depletion and SR Ca2+ uptake rates during development in rabbit ventricular myocytes. Am J Physiol Cell Physiol 293:C1906–C1915. doi:10.1152/ajpcell.00241.2007

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Miyado M, Igarashi M et al (2014) Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep 4:5396. doi:10.1038/srep05396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwamoto T, Wakabayashi S, Shigekawa M (1995) Growth factor-induced phosphorylation and activation of aortic smooth muscle Na+/Ca2+ exchanger. J Biol Chem 270:8996–9001

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271:13609–13615

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M (1999) Chimeric analysis of Na(+)/Ca(2+) exchangers NCX1 and NCX3 reveals structural domains important for differential sensitivity to external Ni(2+) or Li(+). J Biol Chem 274:23094–23102

    Article  CAS  PubMed  Google Scholar 

  • John SA, Ribalet B, Weiss JN, Philipson KD, Ottolia M (2011) Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc Natl Acad Sci U S A 108:1699–1704. doi:10.1073/pnas.1016114108

  • John SA, Liao J, Jiang Y, Ottolia M (2013) The cardiac Na+–Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proc Natl Acad Sci U S A 110:7500–7505. doi:10.1073/pnas.1218751110

  • Johnson E, Bruschweiler-Li L, Showalter SA, Vuister GW, Zhang F, Bruschweiler R (2008) Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. J Mol Biol 377:945–955. doi:10.1016/j.jmb.2008.01.046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 94:1800–1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamiya T, Maeshima M (2004) Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations. J Biol Chem 279:812–819. doi:10.1074/jbc.M309726200

    Article  CAS  PubMed  Google Scholar 

  • Kemeny LV, Schnur A, Czepan M et al (2013) Na+/Ca2+ exchangers regulate the migration and proliferation of human gastric myofibroblasts. Am J Physiol Gastrointest Liver Physiol 305:G552–G563. doi:10.1152/ajpgi.00394.2012

    Article  CAS  PubMed  Google Scholar 

  • Kofuji P, Lederer WJ, Schulze DH (1994) Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem 269:5145–5149

    CAS  PubMed  Google Scholar 

  • Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ (2008) Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 17:3271–3280. doi:10.1093/hmg/ddn223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuroda H, Sobhan U, Sato M, Tsumura M, Ichinohe T, Tazaki M, Shibukawa Y (2013) Sodium-calcium exchangers in rat trigeminal ganglion neurons. Mol Pain 9:22. doi:10.1186/1744-8069-9-22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuszczak I, Kuner R, Samson SE, Grover AK (2010) Proximity of Na+-Ca2+−exchanger and sarco/endoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle: fluorescence microscopy. Mol Cell Biochem 339:293–300. doi:10.1007/s11010-010-0392-y

    Article  CAS  PubMed  Google Scholar 

  • Larbig R, Torres N, Bridge JH, Goldhaber JI, Philipson KD (2010) Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 588:3267–3276. doi:10.1113/jphysiol.2010.187708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352:130–134. doi:10.1016/j.bbrc.2006.10.160

    Article  CAS  PubMed  Google Scholar 

  • Lencesova L, O'Neill A, Resneck WG, Bloch RJ, Blaustein MP (2004) Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes. J Biol Chem 279:2885–2893. doi:10.1074/jbc.M310365200

    Article  CAS  PubMed  Google Scholar 

  • Leoty C (1984) Sodium withdrawal contractures in rat slow twitch skeletal muscle. Gen Physiol Biophys 3:413–429

    CAS  PubMed  Google Scholar 

  • Li JM, Kimura J (1991) Translocation mechanism of cardiac Na-Ca exchange. Ann N Y Acad Sci 639:48–60

    Article  CAS  PubMed  Google Scholar 

  • Li JP, Kajiya H, Okamoto F, Nakao A, Iwamoto T, Okabe K (2007) Three Na+/Ca2+ exchanger (NCX) variants are expressed in mouse osteoclasts and mediate calcium transport during bone resorption. Endocrinology 148:2116–2125. doi:10.1210/en.2006-1321

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–690. doi:10.1126/science.1215759

  • Lin LF, Kao LS, Westhead EW (1994) Agents that promote protein phosphorylation inhibit the activity of the Na+/Ca2+ exchanger and prolong Ca2+ transients in bovine chromaffin cells. J Neurochem 63:1941–1947

    Article  CAS  PubMed  Google Scholar 

  • Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, Philipson KD (1998) Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Physiol 274:C415–C423

    CAS  PubMed  Google Scholar 

  • Lindgren RM, Zhao J, Heller S, Berglind H, Nister M (2005) Molecular cloning and characterization of two novel truncated isoforms of human Na+/Ca2+ exchanger 3, expressed in fetal brain. Gene 348:143–155. doi:10.1016/j.gene.2005.01.003

  • Liu T, O'Rourke B (2013) Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J Biol Chem 288:31984–31992. doi:10.1074/jbc.M113.496588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez Y, N'Gouemo P (2010) Blockade of the sodium calcium exchanger exhibits anticonvulsant activity in a pilocarpine model of acute seizures in rats. Brain Res 1366:211–216. doi:10.1016/j.brainres.2010.09.100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuda T, Takuma K, Nishiguchi E, Hashimoto H, Azuma J, Baba A (1996) Involvement of Na+-Ca2+ exchanger in reperfusion-induced delayed cell death of cultured rat astrocytes. Eur J Neurosci 8:951–958

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Nicoll DA, Reilly RF, Hilgemann DW, Philipson KD (1993) Initial localization of regulatory regions of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Proc Natl Acad Sci U S A 90:3870–3874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mene P, Pugliese F, Cinotti GA (1991) Regulation of Na(+)-Ca2+ exchange in cultured human mesangial cells. Am J Physiol 261:F466–F473

    CAS  PubMed  Google Scholar 

  • Michel LY, Verkaart S, Koopman WJ, Willems PH, Hoenderop JG, Bindels RJ (2014) Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J Biol Chem 289:11293–11303. doi:10.1074/jbc.M113.529388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minami A, Xia YF, Zucker RS (2007) Increased Ca2+ influx through Na+/Ca2+ exchanger during long-term facilitation at crayfish neuromuscular junctions. J Physiol 585:413–427. doi:10.1113/jphysiol.2007.143032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohammadi E, Bigdeli MR (2013) Effects of preconditioning with normobaric hyperoxia on Na(+)/Ca(2)(+) exchanger in the rat brain. Neuroscience 237:277–284. doi:10.1016/j.neuroscience.2013.01.064

    Article  CAS  PubMed  Google Scholar 

  • Molinaro P, Cuomo O, Pignataro G et al (2008) Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28:1179–1184. doi:10.1523/JNEUROSCI. 4671-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Molinaro P, Viggiano D, Nistico R, et al. (2011) Na+-Ca2+ exchanger (NCX3) knock-out mice display an impairment in hippocampal long-term potentiation and spatial learning and memory. J Neurosci 31:7312–7321. doi:10.1523/JNEUROSCI.6296-10.2011

  • Moore ED, Etter EF, Philipson KD, Carrington WA, Fogarty KE, Lifshitz LM, Fay FS (1993) Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365:657–660. doi:10.1038/365657a0

    Article  CAS  PubMed  Google Scholar 

  • Morad M, Cleemann L, Menick DR (2011) NCX1 phosphorylation dilemma: a little closer to resolution. Focus on “Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A”. Am J Physiol Cell Physiol 300:C970–C973. doi:10.1152/ajpcell.00064.2011

    Article  CAS  PubMed  Google Scholar 

  • Newell EW, Stanley EF, Schlichter LC (2007) Reversed Na+/Ca2+ exchange contributes to Ca2+ influx and respiratory burst in microglia. Channels (Austin) 1:366–376

    Article  Google Scholar 

  • N'Gouemo P (2013) Probing the role of the sodium/calcium exchanger in pentylenetetrazole-induced generalized seizures in rats. Brain Res Bull 90:52–57. doi:10.1016/j.brainresbull.2012.09.007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem 271:24914–24921

    Article  CAS  PubMed  Google Scholar 

  • Nicoll DA, Sawaya MR, Kwon S, Cascio D, Philipson KD, Abramson J (2006) The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J Biol Chem 281:21577–21581. doi:10.1074/jbc.C600117200

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa T, Kita S, Maturana AD et al (2013) Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science 341:168–172. doi:10.1126/science.1239002

    Article  CAS  PubMed  Google Scholar 

  • Nurbaeva MK, Schmid E, Szteyn K, Yang W, Viollet B, Shumilina E, Lang F (2012) Enhanced Ca(2)(+) entry and Na+/Ca(2)(+) exchanger activity in dendritic cells from AMP-activated protein kinase-deficient mice. FASEB J 26:3049–3058. doi:10.1096/fj.12-204024

    Article  CAS  PubMed  Google Scholar 

  • Okumura R, Shibukawa Y, Muramatsu T, Hashimoto S, Nakagawa K, Tazaki M, Shimono M (2010) Sodium-calcium exchangers in rat ameloblasts. J Pharmacol Sci 112:223–230

    Article  CAS  PubMed  Google Scholar 

  • On C, Marshall CR, Chen N, Moyes CD, Tibbits GF (2008) Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol Biol 8:127. doi:10.1186/1471-2148-8-127

    Article  PubMed Central  PubMed  Google Scholar 

  • Ottolia M, Nicoll DA, John S, Philipson KD (2010) Interactions between Ca2+ binding domains of the Na+-Ca2+ exchanger and secondary regulation. Channels (Austin) 4:159–162

    Article  CAS  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441. doi:10.1073/pnas.0908099107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pannaccione A, Secondo A, Molinaro P et al (2012) A New Concept: Abeta1-42 Generates a Hyperfunctional Proteolytic NCX3 Fragment That Delays Caspase-12 Activation and Neuronal Death. J Neurosci 32:10609–10617. doi:10.1523/JNEUROSCI.6429-11.2012

  • Papa M, Canitano A, Boscia F et al (2003) Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol 461:31–48. doi:10.1002/cne.10665

    Article  CAS  PubMed  Google Scholar 

  • Piacentino V 3rd, Margulies KB, Houser SR (2002) Ca influx via the Na/Ca exchanger maintains sarcoplasmic reticulum Ca content in failing human myocytes. Ann N Y Acad Sci 976:476–477

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Gala R, Cuomo O et al (2004) Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35:2566–2570. doi:10.1161/01.STR.0000143730.29964.93

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Boscia F, Esposito E et al (2012) NCX1 and NCX3: two new effectors of delayed preconditioning in brain ischemia. Neurobiol Dis 45:616–623. doi:10.1016/j.nbd.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Quednau BD, Nicoll DA, Philipson KD (1997) Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272:C1250–C1261

    CAS  PubMed  Google Scholar 

  • Rahamimoff H, Elbaz B, Valitsky M, Khatib M, Eskin-Schwartz M, Elmaz D (2013) Immunosuppressive drugs, immunophilins, and functional expression of NCX isoforms. Adv Exp Med Biol 961:275–287. doi:10.1007/978-1-4614-4756-6_23

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Nicoll DA, Galang G, Philipson KD (2008) Intermolecular cross-linking of Na+-Ca2+ exchanger proteins: evidence for dimer formation. Biochemistry 47:6081–6087. doi:10.1021/bi800177t

    Article  CAS  PubMed  Google Scholar 

  • Roberts DE, Matsuda T, Bose R (2012) Molecular and functional characterization of the human platelet Na(+) /Ca(2+) exchangers. Br J Pharmacol 165:922–936. doi:10.1111/j.1476-5381.2011.01600.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russell JM, Blaustein MP (1974) Calcium efflux from barnacle muscle fibers. Dependence on external cations. J Gen Physiol 63:144–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russell JM, Blaustein MP (1975) Calcium fluxes in internally dialyzed giant barnacle muscle fibers. J Membr Biol 23:157–179

    Article  CAS  PubMed  Google Scholar 

  • Schwab BL, Guerini D, Didszun C et al (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9:818–831. doi:10.1038/sj.cdd.4401042

    Article  CAS  PubMed  Google Scholar 

  • Scorziello A, Savoia C, Sisalli MJ et al (2013) NCX3 regulates mitochondrial Ca(2+) handling through the AKAP121-anchored signaling complex and prevents hypoxia-induced neuronal death. J Cell Sci 126:5566–5577. doi:10.1242/jcs.129668

    Article  CAS  PubMed  Google Scholar 

  • Secondo A, Staiano RI, Scorziello A, et al. (2007) BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42:521–535. doi:10.1016/j.ceca.2007.01.006

  • Secondo A, Molinaro P, Pannaccione A et al (2011) Nitric oxide stimulates NCX1 and NCX2 but inhibits NCX3 isoform by three distinct molecular determinants. Mol Pharmacol 79:558–568. doi:10.1124/mol.110.069658

    Article  CAS  PubMed  Google Scholar 

  • Simchowitz L, Cragoe EJ Jr (1988) Na+-Ca2+ exchange in human neutrophils. Am J Physiol 254:C150–C164

    CAS  PubMed  Google Scholar 

  • Sokolow S, Manto M, Gailly P et al (2004) Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J Clin Invest 113:265–273. doi:10.1172/JCI18688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solis-Garrido LM, Pintado AJ, Andres-Mateos E, Figueroa M, Matute C, Montiel C (2004) Cross-talk between native plasmalemmal Na+/Ca2+ exchanger and inositol 1,4,5-trisphosphate-sensitive Ca2+ internal store in Xenopus oocytes. J Biol Chem 279:52414–52424. doi:10.1074/jbc.M408872200

    Article  CAS  PubMed  Google Scholar 

  • Sosnoski DM, Gay CV (2008) NCX3 is a major functional isoform of the sodium-calcium exchanger in osteoblasts. J Cell Biochem 103:1101–1110. doi:10.1002/jcb.21483

    Article  CAS  PubMed  Google Scholar 

  • Staiano RI, Granata F, Secondo A et al (2009) Expression and function of Na+/Ca2+ exchangers 1 and 3 in human macrophages and monocytes. Eur J Immunol 39:1405–1418. doi:10.1002/eji.200838792

    Article  CAS  PubMed  Google Scholar 

  • Stains JP, Gay CV (1998) Asymmetric distribution of functional sodium-calcium exchanger in primary osteoblasts. J Bone Miner Res 13:1862–1869. doi:10.1359/jbmr.1998.13.12.1862

    Article  CAS  PubMed  Google Scholar 

  • Stains JP, Weber JA, Gay CV (2002) Expression of Na(+)/Ca(2+) exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca(2+) ATPase during osteoblast differentiation. J Cell Biochem 84:625–635

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  • Szerencsei RT, Kinjo TG, Schnetkamp PP (2013) The topology of the C-terminal sections of the NCX1 Na (+) /Ca (2+) exchanger and the NCKX2 Na (+)/Ca (2+) -K (+) exchanger. Channels (Austin) 7:109–114. doi:10.4161/chan.23898

  • Trosper TL, Philipson KD (1983) Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta 731:63–68

    Article  CAS  PubMed  Google Scholar 

  • Tsumura M, Okumura R, Tatsuyama S et al (2010) Ca2+ extrusion via Na+-Ca2+ exchangers in rat odontoblasts. J Endod 36:668–674. doi:10.1016/j.joen.2010.01.006

    Article  PubMed  Google Scholar 

  • Viatchenko-Karpinski S, Terentyev D, Jenkins LA, Lutherer LO, Gyorke S (2005) Synergistic interactions between Ca2+ entries through L-type Ca2+ channels and Na+-Ca2+ exchanger in normal and failing rat heart. J Physiol 567:493–504. doi:10.1113/jphysiol.2005.091280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wacholtz MC, Cragoe EJ Jr, Lipsky PE (1992) A Na(+)-dependent Ca2+ exchanger generates the sustained increase in intracellular Ca2+ required for T cell activation. J Immunol 149:1912–1920

    CAS  PubMed  Google Scholar 

  • Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279:14473–14476. doi:10.1074/jbc.R400003200

    Article  CAS  PubMed  Google Scholar 

  • Winkfein RJ, Szerencsei RT, Kinjo TG, Kang K, Perizzolo M, Eisner L, Schnetkamp PP (2003) Scanning mutagenesis of the alpha repeats and of the transmembrane acidic residues of the human retinal cone Na/Ca-K exchanger. Biochemistry 42:543–552. doi:10.1021/bi026982x

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Wei GZ, Li WJ, Liu B, Zhou JJ, Wang HC, Gao F (2010) Low extracellular K+ increases intracellular Ca2+ oscillation and injury by activating the reverse mode Na+-Ca2+ exchanger and inhibiting the Na+, K+ ATPase in rat cardiomyocytes. Int J Cardiol 140:161–168. doi:10.1016/j.ijcard.2008.11.037

    Article  PubMed  Google Scholar 

  • Wu M, Tong S, Gonzalez J, Jayaraman V, Spudich JL, Zheng L (2011) Structural basis of the Ca2+ inhibitory mechanism of Drosophila Na+/Ca2+ exchanger CALX and its modification by alternative splicing. Structure 19:1509–1517. doi:10.1016/j.str.2011.07.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu M, Tong S, Waltersperger S, Diederichs K, Wang M, Zheng L (2013) Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc Natl Acad Sci U S A 110:11367–11372. doi:10.1073/pnas.1302515110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamauchi D, Nakaya K, Raveendran NN, Harbidge DG, Singh R, Wangemann P, Marcus DC (2010) Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC Physiol 10:1. doi:10.1186/1472-6793-10-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ (2013) Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 170:156–169. doi:10.1111/bph.12256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X, Moloughney JG, Zhang S, Komazaki S, Weisleder N (2012) Orai1 mediates exacerbated Ca(2+) entry in dystrophic skeletal muscle. PLoS One 7:e49862. doi:10.1371/journal.pone.0049862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong X, Deng J, He P, You N, Wang Q, Song B, Li L (2013) Reverse mode of the sodium/calcium exchanger subtype 3 in interstitial cells of Cajal from rat bladder. Urology 82(254):e257–212. doi:10.1016/j.urology.2013.02.049

    Google Scholar 

Download references

Acknowledgments

This work was performed in the Centre for Systems Biology Research Initiative and financed by the grant CSBR09/013 V from the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauriane Y. M. Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michel, L.Y.M., Hoenderop, J.G.J., Bindels, R.J.M. (2015). Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3. In: Nilius, B., Gudermann, T., Jahn, R., Lill, R., Petersen, O., de Tombe, P. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 168. Springer, Cham. https://doi.org/10.1007/112_2015_23

Download citation

Publish with us

Policies and ethics