Skip to main content

Image Features and the 1-D, 2nd Order Gaussian Derivative Jet

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

We review a previously presented proposal – Geometric Texton Theory (GTT) – that feature categories naturally arise through consideration of the maximum likelihood explanations for image measurements by gaussian derivative filters. We present results relevant to this proposal for the case of 1-D measurement by filters of 0th, 1st and 2nd order. The results are consistent with GTT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr, D.: Vision. W.H. Freeman & co., New York (1982)

    Google Scholar 

  2. Barlow, H.B.: Summation and inhibition in the frog’s retina. Journal of Physiology (London) 119, 69–88 (1953)

    Google Scholar 

  3. Koenderink, J.J., van Doorn, A.J.: Receptive Field Assembly Specificity. Journal of Visual Communication and Image Representation 3(1), 1–12 (1992)

    Article  Google Scholar 

  4. Koenderink, J.J.: What is a feature? J. of Intelligent Systems 3(1), 49–82 (1993)

    MathSciNet  Google Scholar 

  5. Koenderink, J.J., van Doorn, J.: Metamerism in complete sets of image operators. In: Adv. Image Understan. 1996, pp. 113–129 (1996)

    Google Scholar 

  6. Koenderink, J.J., van Doorn, A.J.: Local Image Operators and Iconic Structure. In: Sommer, G., Koenderink, J.J. (eds.) AFPAC 1997. LNCS, vol. 1315, pp. 66–93. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Jones, J.P., Palmer, L.A.: The Two-Dimensional Spatial Structure of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiology 58(6), 1187–1211 (1987)

    Google Scholar 

  8. Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial- Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. Journal of the Optical Society of America a-Optics Image Science and Vision 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  9. Georgeson, M.A., Freeman, T.C.A.: Perceived location of bars and edges in one-dimensional images: Computational models and human vision. Vision Research 37(1), 127–142 (1997)

    Article  Google Scholar 

  10. Young, R.A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vision 2, 273–293 (1987)

    Article  Google Scholar 

  11. Young, R.A., Lesperance, R.M., Meyer, W.W.: The Gaussian Derivative model for spatial-temporal vision: I. Cortical model. Spatial Vision 14(3-4), 261–319 (2001)

    Article  Google Scholar 

  12. Young, R.A., Lesperance, R.M.: The Gaussian Derivative model for spatial-temporal vision: II. Cortical data. Spatial Vision 14(3-4), 321–389 (2001)

    Article  Google Scholar 

  13. Koenderink, J.J., van Doorn, A.J.: Representation of Local Geometry in the Visual-System. Biological Cybernetics 55(6), 367–375 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koenderink, J.J.: Operational Significance of Receptive-Field Assemblies. Biological Cybernetics 58(3), 163–171 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koenderink, J.J., van Doorn, A.J.: Receptive-Field Families. Biological Cybernetics 63(4), 291–297 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Koenderink, J.J., van Doorn, A.J.: Generic Neighborhood Operators. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(6), 597–605 (1992)

    Article  Google Scholar 

  17. Florack, L.M.J., et al.: Families of Tuned Scale-Space Kernels. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 19–23. Springer, Heidelberg (1992)

    Google Scholar 

  18. Debnath, L.: Integral Transforms and their Applications. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  19. Martens, J.B.: Local orientation analysis in images by means of the Hermite transform. IEEE Transactions on Image Processing 6(8), 1103–1116 (1997)

    Article  Google Scholar 

  20. Makram-Ebeid, S., Mory, B.: Scale-space image analysis based on hermite polynomials theory. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 57–71. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50(5), 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  23. Liu, X.W., Wang, D.L.: A spectral histogram model for texton modeling and texture discrimination. Vision Research 42(23), 2617–2634 (2002)

    Article  Google Scholar 

  24. Zhu, S.C., et al.: What are textons? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 793–807. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Julesz, B.: A brief outline of the texton theory of human vision. Trends in Neuroscience 7(2), 41–45 (1984)

    Article  Google Scholar 

  26. Griffin, L.D., Lillholm, M., Nielsen, M.: Natural image profiles are most likely to be step edges. Vision Research 44(4), 407–421 (2004)

    Article  Google Scholar 

  27. Tagliati, E., Griffin, L.D.: Features in Scale Space: Progress on the 2D 2nd Order Jet. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 51–62. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Griffin, L.D.: Local image structure, metamerism, norms, and natural image statistics. Perception 31(3), 377 (2002)

    Google Scholar 

  29. Schrödinger, E.: Theorie der pigmente von grosster leuchtkraft. Annalen den Physik 62, 603–622 (1920)

    Article  Google Scholar 

  30. van Hateren, J.H., Ruderman, D.L.: Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. In: Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 265(1412), pp. 2315–2320 (1998)

    Google Scholar 

  31. Mandelbrot, B., van Ness, J.: Fractional brownian motions, fractional noises and applications. SIAM Review 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  32. Griffin, L.D., Lillholm, M.: Mode Estimation by Pessimistic Scale Space Tracking. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 266–280. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griffin, L.D., Lillholm, M. (2005). Image Features and the 1-D, 2nd Order Gaussian Derivative Jet. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_3

Download citation

  • DOI: https://doi.org/10.1007/11408031_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics