Skip to main content

Capturing Anatomical Shape Variability Using B-Spline Registration

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

  • 2372 Accesses

Abstract

Registration based on B-spline transformations has attracted much attention in medical image processing recently. Non-rigid registration provides the basis for many important techniques, such as statistical shape modeling. Validating the results, however, remains difficult – especially in intersubject registration. This work explores the ability of B-spline registration methods to capture intersubject shape deformations. We study the effect of different established and new shape representations, similarity measures and optimization strategies on the matching quality. To this end we conduct experiments on synthetic shapes representing deformations which typically may arise in intersubject registration, as well as on real patient data of the liver and pelvic bone. The experiments clearly reveal the influence of each component on the registration performance. The results may serve as a guideline for assessing intensity based registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szeliski, R., Lavallée, S.: Matching 3-d anatomical surfaces with non-rigid deformations using octree-splines. IJCV 18(2), 171–186 (1996)

    Article  Google Scholar 

  2. Rückert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Trans Med Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  3. Rohlfing, T., Brandt, R., Maurer, C.R., Menzel, R.: Bee brains, B-splines and computational democracy: Generating an average shape atlas. In: Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analys, pp. 187–194 (2001)

    Google Scholar 

  4. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans Med Imaging 12(11), 1427–1441 (2003)

    Google Scholar 

  5. Kabus, S., Netsch, T., Fischer, B., Modersitzki, J.: B-spline registration of 3D images with Levenberg-Marquardt optimization. In: Proc. SPIE MI, vol. 5370, pp. 304–313 (2004)

    Google Scholar 

  6. Fleute, M., Lavallée, S., Julliard, R.: Incorporating a statistically based shape model into a system for computed-assisted anterior cruciate ligament surgery. MIA 3(3), 209–222 (1999)

    Google Scholar 

  7. Frangi, A.F., Rückert, D., Schnabel, J.A., Niessen, W.J.: Automatic 3D ASM construction via atlas-based landmarking and volumetric elastic registration. In: Proc. IPMI, pp. 78–79 (2001)

    Google Scholar 

  8. Frangi, A.F., Rückert, D., Schnabel, J.A., Niessen, W.J.: Multiple-object three-dimensional shape models: Application to cardiac modeling. IEEE Trans Med Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  9. Brett, A.D., Taylor, C.J.: A method of automated landmark generation for automated 3D PDM construction. Imag. Vis. Comp. 18(9), 739–748 (2000)

    Article  Google Scholar 

  10. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans PAMI 14(2), 239–256 (1992)

    Google Scholar 

  11. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89(2–3), 114–141 (2003)

    MATH  Google Scholar 

  12. Xie, Z., Farin, G.: Image registration using hierarchical B-splines. IEEE Trans. on Visualization and Computer Graphics 10(1), 85–94 (2004)

    Article  Google Scholar 

  13. Paulsen, R.R., Hilger, K.: Shape modelling using Markov random field restoration of point correspondences. In: Proc. IPMI, pp. 1–12 (2003)

    Google Scholar 

  14. Subsol, G., Thirion, J.-P., Ayache, N.: A scheme for automatically building three-dimensional morphometric anatomical atlases: Application to skull atlas. MIA 2(1), 37–60 (1998)

    Google Scholar 

  15. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of Third International Conference on 3D Digital Imaging and Modelling, pp. 145–152 (2001)

    Google Scholar 

  16. Sharp, G.C., Lee, S.W., Wehe, D.K.: ICP registration using invariant features. IEEE Trans PAMI 24(1), 90–102 (2002)

    Google Scholar 

  17. Wang, Y., Peterson, B.S., Staib, L.H.: Shape-based 3D surface correspondence using geodesics and local geometry. In: Proc. CVPR, pp. 644–651 (2000)

    Google Scholar 

  18. Kelemen, A., Székely, G., Gerig, G.: Three-dimensional model-based segmentation of brain MRI. IEEE Trans Med Imaging 18(10), 828–839 (1999)

    Article  Google Scholar 

  19. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Lamecker, H., Lange, T., Seebass, M.: A statistical shape model for the liver. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 422–427. Springer, Heidelberg (2002)

    Google Scholar 

  21. Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)

    Article  Google Scholar 

  22. Rohlfing, T.: Multimodale Datenfusion für die bildgesteuerte Neurochirurgie und Strahlentherapie. PhD thesis, Technische Universität Berlin (2000)

    Google Scholar 

  23. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. IVC 10(8), 557–565 (1992)

    Google Scholar 

  24. Stalling, D., Westerhoff, M., Hege, H.-C.: Amira: A highly interactive system for visual data analysis. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, pp. 749–767 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wenckebach, T.H., Lamecker, H., Hege, HC. (2005). Capturing Anatomical Shape Variability Using B-Spline Registration. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_48

Download citation

  • DOI: https://doi.org/10.1007/11505730_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics