Skip to main content

Running Time Analysis of a Multiobjective Evolutionary Algorithm on Simple and Hard Problems

  • Conference paper
Foundations of Genetic Algorithms (FOGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3469))

Included in the following conference series:

Abstract

In this paper, we suggest a multiobjective evolutionary algorithm based on a restricted mating pool (REMO) with a separate archive for storing the remaining population. Such archive based algorithms have been used for solving real-world applications, however, no theoretical results are available. In this paper, we present a rigorous running time complexity analysis for the algorithm on two simple discrete pseudo boolean functions and on the multiobjective knapsack problem which is known to be NP-complete. We use two well known simple functions LOTZ (Leading Zeros: Trailing Ones) and a quadratic function. For the knapsack problem we formalize a ( 1+ ε)-approximation set under a constraint on the weights of the items. We then generalize the idea by eliminating the constraints based on a principle of partitioning the items into blocks and analyze REMO on it. We use a simple strategy based on partitioning of the decision space into fitness layers for the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NPCompleteness. Freeman, San Francisco (1979)

    Google Scholar 

  2. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)

    Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  4. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms forMultiobjective Minimum Spanning Tree Problems. In: Proc. Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 544–551 (2001)

    Google Scholar 

  5. Kumar, R., Singh, P.K., Chakrabarti, P.P.: Improved quality of solutions for multiobjective spanning tree problem using evolutionary algorithm. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 494–503. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Kumar, R., Rockett, P.I.: Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: A learning-follows-decomposition strategy. IEEE Trans. Neural Networks 9, 822–830 (1998)

    Article  Google Scholar 

  7. Kumar, R.: Codebook design for vector quantization using multiobjective genetic algorithms. In: Proc. PPSN/SAB Workshop on Multiobjective Problem Solving from Nature (2000)

    Google Scholar 

  8. Kumar, R., Parida, P.P., Gupta, M.: Topological design of communication networks using multiobjective genetic optimization. In: Proc. Congress Evolutionary Computation (CEC 2002), pp. 425–430 (2002)

    Google Scholar 

  9. Kumar, R., Banerjee, N.: Multicriteria network design using evolutionary algorithm. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 2179–2190. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis of multiobjective evolutionary algorithms on a discrete optimization problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evolutionary Computation 8, 170–182 (2004)

    Article  Google Scholar 

  12. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing 3, 37–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Droste, S., Jansen, T., Wegener, I.: On the Optimization of Unimodal Functions with the (1+1) Evolutionary Algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Jagersküpper, J.: Analysis of simple evolutionary algorithm for minimization in euclidean spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1068–1079. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Droste, S., Jansen, T., Wegener, I.: On the Analysis of the (1+1) Evolutionary Algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7, 167–203 (1999)

    Article  Google Scholar 

  17. Rudolph, G.: How mutation and selection solve long path problems in polynomial expected time. Evolutionary Computation 4, 207–211 (1996)

    Article  Google Scholar 

  18. Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions. J. Discrete Algorithms (2002)

    Google Scholar 

  19. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms: a proof that crossover really can help. Algorithmica 34, 47–66 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multiojective Problems. Kluwer, Boston (2002)

    Google Scholar 

  21. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  22. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovac̆, Hamburg (1997)

    Google Scholar 

  23. Rudolph, G.: Evolutionary search for minimal elements in partially ordered finite sets. In: Proc. Annual Conference on Evolutionary Programming, pp. 345–353 (1998)

    Google Scholar 

  24. Rudolph, G., Agapie, A.: Convergence properties of some multiobjective evolutionary algorithms. In: Proc. Congress on Evolutionary Computation, pp. 1010–1016 (2000)

    Google Scholar 

  25. Giel, O.: Runtime analysis for a simple multiobjective evolutionary algorithm. Tech-Report, Dept. Computer Science, Univ. Dortmund, Germany (2003)

    Google Scholar 

  26. Thierens, D.: Convergence time analysis for the multi-objective counting ones problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 355–364. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Asho, I.: Interactive Knapsacks: Theory and Applications. Ph.D. Thesis, Tech Report No.: A- 2002-13, Department of Computer and Information Sciences, University of Tampere (2002)

    Google Scholar 

  28. Frieze, A., Clarke, M.: Approximation algorithms form-dimensional 0-1 knapsack problem: Worst case and probabilistic analysis. European J. Operations Research 15, 100–109 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multiobjective Knapsack Problems. Management Science 48, 1603–1612 (2002)

    Article  Google Scholar 

  30. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problem. J. ACM 22, 463–468 (1984)

    Article  MathSciNet  Google Scholar 

  31. Beyer, H.G., Schwefel, H.P., Wegener, I.: How to Analyse Evolutionary Algorithms? Theoretical Computer Science 287, 101–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Scharnow, J., Tinnefeld, K., Wegener, I.: Fitness landscapes based on sorting and shortest path problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 54–63. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  33. Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation of algorithms for black-box optimization. In: Proc. Foundations of Genetic Algorithms Workshop (FOGA VII), pp. 197–214 (2002)

    Google Scholar 

  34. Deb, K., et al.: A Fast Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization: NSGA-II. In: Proc. Parallel Problem Solving from Nature (PPSN-VI). LNCS, pp. 849–858 (2000)

    Google Scholar 

  35. Knowles, J.D., Corne, D.W.: Approximating the Non-Dominated Front Using the Pareto Achieved Evolution Strategy. Evolutionary Computation 8, 149–172 (2000)

    Article  Google Scholar 

  36. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10, 283–314 (2002)

    Article  Google Scholar 

  37. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Proc. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, EUROGEN (2001)

    Google Scholar 

  38. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evolutionary Computation 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Banerjee, N. (2005). Running Time Analysis of a Multiobjective Evolutionary Algorithm on Simple and Hard Problems. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_7

Download citation

  • DOI: https://doi.org/10.1007/11513575_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27237-3

  • Online ISBN: 978-3-540-32035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics