Skip to main content

A Model for Delay Activity Without Recurrent Excitation

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

Delay activity (DA) is the increased firing rate of a cortical population, which persists when the stimulus that induced it is removed. It is believed to be the neural substrate for working memory, and as such highly relevant for theories of cognition. The cortex is highly recurrent, mainly excitatory, and finding stable attractors for DA at low firing rates for realistic neuronal parameters has proven to be hard. Most models for DA use recurrent excitation. Here a model with recurrent disinhibition is presented, which is manifestly stable. This model requires a cortical circuit that is slightly more complex than circuits in models using recurrent excitation, but circuits of comparable complexity have been found in cortex. Since delay attractors can not be observed directly, it is important to consider all theoretical possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, D., Brunel, N.: Model of Global Spontaneous Activity and Local Structred Activity During Delay Periods in the Cerebral Cortex. Cerebral Cortex 7, 237–252 (1997)

    Article  Google Scholar 

  2. Latham, P.E., Nirenberg, S.: Computing and Stability in Cortical Networks Neural Computation 16, 1385–1412 (2004)

    Google Scholar 

  3. Gonchar, Y., Burkhalter, A.: Connectivity of GABAergic Calretinin-immunoreactive Neurons in Rat Primary Visual Cortex. Cerebral Cortex 9, 683–696 (1999)

    Article  Google Scholar 

  4. van der Velde, F., de Kamps, M.: Neural Blackboard Architectures of Combinatorial Structures in Cognition. To appear in: Behavioral and Brain Sciences

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Kamps, M. (2005). A Model for Delay Activity Without Recurrent Excitation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_37

Download citation

  • DOI: https://doi.org/10.1007/11550822_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics