Skip to main content

Nanoparticles in Biomedical Applications

  • Chapter
  • First Online:
Measuring Biological Impacts of Nanomaterials

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 5))

Abstract

Due to readily adaptive sizes, shapes, compositions and large surface area to volume ratios, nanoparticles (NPs) are increasingly prevalent in biomedical applications. In recent times, a plethora of NPs have been investigated specifically regarding how they can be exploited for drug delivery, bioimaging agents and theranostic tools. In this article, lipid-based, inorganic, dendrimeric and polymeric nanoparticles serving these applications are described. The ease of synthesis of these NPs, coupled with an enhanced stability, reduced toxicity and ability to conjugate with diverse molecules (peptides, proteins, antibodies, aptamers) for biocompatibility and biotargeting, indicates that all the key components are being met for their advances towards approved therapies. For their successful applications as drug delivery systems, smart polymeric NPs responding to stimuli such as heat, pH and light to provide controlled release have been introduced. Upconverting nanoparticles and molecularly imprinted polymers, often termed plastic antibodies because of their high affinity and selectivity towards their target molecules, are further discussed as novel bioimaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17(8):2950–2962

    Article  CAS  Google Scholar 

  2. Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. US5250236A, USA

    Google Scholar 

  3. Müller RH, Lucks JS (1996) Medication vehicles made of solid lipid nanoparticles (SLN). EP0605497 B1, Germany

    Google Scholar 

  4. Müller RH (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59(6):522–530

    Article  CAS  Google Scholar 

  5. Fang JY et al (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70(2):633–640

    Article  CAS  Google Scholar 

  6. Cavalli R et al (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1):241–245

    Article  CAS  Google Scholar 

  7. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  Google Scholar 

  8. Almeida AJ, Runge S, Müller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 149(2):255–265

    Article  CAS  Google Scholar 

  9. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490

    Article  CAS  Google Scholar 

  10. Hu F, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273(1):29–35

    Article  CAS  Google Scholar 

  11. zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155

    Google Scholar 

  12. Wissing S, Kayser O, Müller R (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    Article  CAS  Google Scholar 

  13. Menger FM, Keiper JS (1998) Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol 2(6):726–732

    Article  CAS  Google Scholar 

  14. Hwang SY et al (2012) Effects of operating parameters on the efficiency of liposomal encapsulation of enzymes. Colloids Surf B Biointerfaces 94:296–303

    Article  CAS  Google Scholar 

  15. He J et al (2013) Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release. Angew Chem 125(9):2523–2528

    Article  Google Scholar 

  16. Apple MA, Hunt CA, Yanagisawa H. (1981) Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same US4263428A, USA

    Google Scholar 

  17. Deamer DW (1985) Method for encapsulating materials into liposomes US4515736 A.

    Google Scholar 

  18. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  Google Scholar 

  19. Bangham AD, Hill MW, Miller NGA (1974) Methods in Membrane Biology, Ch 1, Vol 1, Ed. Korn ED, Springer US

    Google Scholar 

  20. Szoka JR, Papahadjopoulos FD (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9(1):467–508

    Article  CAS  Google Scholar 

  21. Olson F et al (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta Biomembr 557(1):9–23

    Article  CAS  Google Scholar 

  22. Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    Article  CAS  Google Scholar 

  23. Szoka F et al (1980) Preparation of unilamellar liposomes of intermediate size (0.1–0.2 μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta Biomembr 601:559–571

    Google Scholar 

  24. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  Google Scholar 

  25. Knudsen NØ et al (2012) Calcipotriol delivery into the skin with PEGylated liposomes. Eur J Pharm Biopharm 81(3):532–539

    Article  CAS  Google Scholar 

  26. Verma D et al (2003) Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm 55(3):271–277

    Article  CAS  Google Scholar 

  27. Beukelman C et al (2008) Anti-inflammatory properties of a liposomal hydrogel with povidone-iodine (Repithel®) for wound healing in vitro. Burns 34(6):845–855

    Article  CAS  Google Scholar 

  28. Needham D et al (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60(5):1197–1201

    CAS  Google Scholar 

  29. Kundu AK et al (2012) Stability of lyophilized siRNA nanosome formulations. Int J Pharm 423(2):525–534

    Article  CAS  Google Scholar 

  30. Weissig V, Whiteman KR, Torchilin VP (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 15(10):1552–1556

    Article  CAS  Google Scholar 

  31. Lurquin PF (1981) Binding of plasmid loaded liposomes to plant protoplasts: validity of biochemical methods to evaluate the transfer of exogenous DNA. Plant Sci Lett 21(1):31–40

    Article  CAS  Google Scholar 

  32. Torchilin VP, Zhou F, Huang L (1993) pH-sensitive liposomes. J Liposome Res 3(2):201–255

    Article  CAS  Google Scholar 

  33. Yatvin M et al (1980) pH-sensitive liposomes: possible clinical implications. Science 210(4475):1253–1255

    Article  CAS  Google Scholar 

  34. Dromi S et al (2007) Pulsed-high intensity focused ultrasound and low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13(9):2722–2727

    Article  CAS  Google Scholar 

  35. Gerasimov OV et al (1999) Cytosolic drug delivery using pH-and light-sensitive liposomes. Adv Drug Deliv Rev 38(3):317–338

    Article  CAS  Google Scholar 

  36. Zalipsky S (1993) Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug Chem 4(4):296–299

    Article  CAS  Google Scholar 

  37. van der Meel R et al (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85

    Article  CAS  Google Scholar 

  38. Patolsky F, Lichtenstein A, Willner I (2000) Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc 122(2):418–419

    Article  CAS  Google Scholar 

  39. Cao Z et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48(35):6494–6498

    Article  CAS  Google Scholar 

  40. Lehr CM (2000) Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release 65(1):19–29

    Article  CAS  Google Scholar 

  41. Allen TM et al (1995) A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta Biomembr 1237(2):99–108

    Article  Google Scholar 

  42. FDA (1995) U.S. Doxil®. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/050718s043lbl.pdf

  43. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Google Scholar 

  44. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  45. Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935

    Article  CAS  Google Scholar 

  46. Ruiz JM, Benoit JP (1991) In vivo peptide release from poly (DL-lactic acid-co-glycolic acid) copolymer 5050 microspheres. J Control Release 16(1):177–185

    Article  CAS  Google Scholar 

  47. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349

    Article  CAS  Google Scholar 

  48. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  49. Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5(3):261–264

    Article  CAS  Google Scholar 

  50. Chen JF et al (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25(4):723–727

    Article  CAS  Google Scholar 

  51. Arruebo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  52. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    Article  CAS  Google Scholar 

  53. Vallet-Regi M et al (2001) A new property of MCM-41drug delivery system. Chem Mater 13(2):308–311

    Article  CAS  Google Scholar 

  54. Lu Y et al (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186

    Article  CAS  Google Scholar 

  55. Liong M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  Google Scholar 

  56. Schwenk MH (2010) Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease. Pharmacotherapy 30(1):70–79

    Article  CAS  Google Scholar 

  57. ClinicalTrials.gov (2015) Using Ferumoxytol-enhanced MRI to measure inflammation in patients with brain tumors or other conditions of the CNS

    Google Scholar 

  58. Dabbousi BO et al (1997) (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  59. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  60. Gerion D et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871

    Article  CAS  Google Scholar 

  61. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  62. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  63. Stefani FD, Hoogenboom JP, Barkai E (2009) Beyond quantum jumps: blinking nanoscale light emitters. Phys Today 62(2):34–39

    Article  CAS  Google Scholar 

  64. Mahler B et al (2008) Towards non-blinking colloidal quantum dots. Nat Mater 7(8):659–664

    Article  CAS  Google Scholar 

  65. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120

    Article  CAS  Google Scholar 

  66. Kim J et al (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20(3):478–483

    Article  CAS  Google Scholar 

  67. Park YI et al (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471

    Article  CAS  Google Scholar 

  68. Lee PW et al (2010) Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 31:2425–2434

    Article  CAS  Google Scholar 

  69. Erogbogbo F et al (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4(9):5131–5138

    Article  CAS  Google Scholar 

  70. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175

    Article  Google Scholar 

  71. Buhleier E, Wehner W, Vogtle F (1978) Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis 2:155–158

    Article  Google Scholar 

  72. Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem 40(16):2719–2728

    Article  CAS  Google Scholar 

  73. Lee CC et al (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A 103(45):16649–16654

    Article  CAS  Google Scholar 

  74. Fischer M, Vögtle F (1999) Dendrimers: from design to application—a progress report. Angew Chem Int Ed 38(7):884–905

    Article  Google Scholar 

  75. Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379

    Article  CAS  Google Scholar 

  76. Kojima C et al (2000) Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11(6):910–917

    Article  CAS  Google Scholar 

  77. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  78. FDA (2014) Drugs and medical devices search. http://www.fda.gov/

  79. Gebelein CG, Dunn RL (1990) Progress in biomedical polymers. Springer-Verlag New York Inc.

    Google Scholar 

  80. Berscht PC et al (1994) Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15(8):593–600

    Article  CAS  Google Scholar 

  81. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  Google Scholar 

  82. Samal SK et al (2012) Cationic polymers and their therapeutic potential. Chem Soc Rev 41(21):7147–7194

    Article  CAS  Google Scholar 

  83. Huang M, Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21(2):344–353

    Article  CAS  Google Scholar 

  84. Leong K et al (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53(1):183–193

    Article  CAS  Google Scholar 

  85. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24(11):979–993

    Article  CAS  Google Scholar 

  86. Mi FL et al (1999) Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug I effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. J Appl Polym Sci 74(7):1868–1879

    Article  CAS  Google Scholar 

  87. Mi FL et al (1999) Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug II effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74(5):1093–1107

    Article  CAS  Google Scholar 

  88. Mi FL et al (1999) Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials 20(17):1603–1612

    Article  CAS  Google Scholar 

  89. Mansouri S et al (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27(9):2060–2065

    Article  CAS  Google Scholar 

  90. Mao HQ et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70(3):399–421

    Article  CAS  Google Scholar 

  91. Jia Z, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333(1):1–6

    Article  CAS  Google Scholar 

  92. Stepnova EA et al (2007) New approach to the quaternization of chitosan and its amphiphilic derivatives. Eur Polym J 43(6):2414–2421

    Article  CAS  Google Scholar 

  93. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  CAS  Google Scholar 

  94. Shi XY, Tan TW (2002) Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of Vitamin D2. Biomaterials 23(23):4469–4473

    Article  CAS  Google Scholar 

  95. Azzam T et al (2002) Polysaccharide-oligoamine based conjugates for gene delivery. J Med Chem 45(9):1817–1824

    Article  CAS  Google Scholar 

  96. Hosseinkhani H et al (2004) Dextran–spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 11(2):194–203

    Article  CAS  Google Scholar 

  97. Marchyk N et al (2014) One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells. Nanoscale 6(5):2872–2878

    Article  CAS  Google Scholar 

  98. Shastri AP (2003) Non-degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 4(5):331–337

    Article  CAS  Google Scholar 

  99. FDA (2009) U.S. Implanon™ (etonogestrel implant). http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021529s004lbl.pdf.

  100. de las Heras Alarcón C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    Google Scholar 

  101. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly (N-isopropylacrylamide) and poly (N-isopropylmethacrylamide). J Phys Chem 93(8):3311–3313

    Article  CAS  Google Scholar 

  102. Gibson MI, O'Reilly RK (2013) To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem Soc Rev 42(17):7204–7213

    Article  CAS  Google Scholar 

  103. Chun SW, Kim JD (1996) A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. J Control Release 38(1):39–47

    Article  CAS  Google Scholar 

  104. Kidchob T, Kimura S, Imanishi Y (1998) Thermoresponsive release from poly(Glu(OMe))-block-poly(Sar) microcapsules with surface-grafting of poly(N-isopropylacrylamide). J Control Release 50(1–3):205–214

    Article  CAS  Google Scholar 

  105. Eeckman F, Moës AJ, Amighi K (2002) Evaluation of a new controlled-drug delivery concept based on the use of thermoresponsive polymers. Int J Pharm 241(1):113–125

    Article  CAS  Google Scholar 

  106. Cooperstein MA, Canavan HE (2013) Assessment of cytotoxicity of (N-isopropyl acrylamide) and Poly (N-isopropyl acrylamide)-coated surfaces. Biointerphases 8(1):19–30

    Article  CAS  Google Scholar 

  107. Malonne H et al (2005) Preparation of poly(N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice. Eur J Pharm Biopharm 61(3):188–194

    Article  CAS  Google Scholar 

  108. Schornack PA, Gillies RJ (2003) Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors. Neoplasia 5(2):135–145

    Article  CAS  Google Scholar 

  109. Kyriakides TR et al (2002) pH-sensitive polymers that enhance intracellular drug delivery in vivo. J Control Release 78(1):295–303

    Article  CAS  Google Scholar 

  110. Dong LC, Hoffman AS (1991) A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release 15(2):141–152

    Article  CAS  Google Scholar 

  111. Foss AC et al (2004) Development of acrylic-based copolymers for oral insulin delivery. Eur J Pharm Biopharm 57(2):163–169

    Article  CAS  Google Scholar 

  112. Panyam J et al (2002) Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16(10):1217–1226

    Article  CAS  Google Scholar 

  113. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1):278–301

    Article  CAS  Google Scholar 

  114. Peng K, Tomatsu I, Kros A (2010) Light controlled protein release from a supramolecular hydrogel. Chem Commun 46(23):4094–4096

    Article  CAS  Google Scholar 

  115. Patnaik S et al (2007) Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342(1-2):184–193

    Article  CAS  Google Scholar 

  116. Alexander C et al (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180

    Article  CAS  Google Scholar 

  117. Haupt K et al (2012) Molecularly imprinted polymers. In: Molecular imprinting. Springer, pp 1–28

    Google Scholar 

  118. Tse Sum Bui B, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398(6):2481–2492

    Article  CAS  Google Scholar 

  119. Haupt K (2001) Molecularly imprinted polymers in analytical chemistry. Analyst 126(6):747–756

    Article  CAS  Google Scholar 

  120. Ton XA et al (2013) A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ. Angew Chem Int Ed 52(32):8317–8321

    Article  CAS  Google Scholar 

  121. Fuchs Y et al (2013) Holographic molecularly imprinted polymers for label-free chemical sensing. Adv Mater 25(4):566–570

    Article  CAS  Google Scholar 

  122. Vlatakis G et al (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645–647

    Article  CAS  Google Scholar 

  123. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378(8):1887–1897

    Article  CAS  Google Scholar 

  124. Hiratani H et al (2005) Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26(11):1293–1298

    Article  CAS  Google Scholar 

  125. Li B et al (2014) Water-compatible silica sol–gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid. J Mol Recognit 27(9):559–565

    Article  CAS  Google Scholar 

  126. Hoshino Y et al (2010) Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 132(19):6644–6645

    Article  CAS  Google Scholar 

  127. Cutivet A et al (2009) Molecularly imprinted microgels as enzyme inhibitors. J Am Chem Soc 131(41):14699–14702

    Article  CAS  Google Scholar 

  128. Kunath S et al (2015) Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthcare Mater 4:1322–1326

    Google Scholar 

  129. Tieppo A et al (2012) Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157(3):391–397

    Article  CAS  Google Scholar 

  130. Díaz-García ME, Laínño RB (2005) Molecular imprinting in sol–gel materials: recent developments and applications. Microchim Acta 149(1-2):19–36

    Article  CAS  Google Scholar 

  131. Beyazit S et al (2014) Versatile synthesis strategy for coating up converting nanoparticles with polymer shells by localized photopolymerization using the particles as internal light sources. Angew Chem Int Ed 53:8919–8923

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the European Commission, Marie Curie Actions, Project NANODRUG, MCITN-2011-289554.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karsten Haupt or Bernadette Tse Sum Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maximilien, J., Beyazit, S., Rossi, C., Haupt, K., Tse Sum Bui, B. (2015). Nanoparticles in Biomedical Applications. In: Wegener, J. (eds) Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, vol 5. Springer, Cham. https://doi.org/10.1007/11663_2015_12

Download citation

Publish with us

Policies and ethics