Skip to main content

Identification and Comparison of Motifs in Brain-Specific and Muscle-Specific Alternative Splicing

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

Abstract

Regulatory elements are important to the regulation of tissue-specific alternative splicing. Here we report a genome-wide analysis of motifs involved in human brain-specific or muscle-specific alternative splicing. Comparing relative abundance of alternative splice forms based on Bayesian statistics, we identified many tissue-specific exon skipping events in normal or tumor samples from brain or muscle. Motifs possibly function in these events were subsequently distinguished using EM algorithm. Analyses of these motifs suggest that some exons are tissue-specifically skipped through a loop out mechanism and motif locations are sometimes important. Furthermore, comparison of motifs in normal and tumor samples suggests that there may exist different tumorigenesis mechanisms between brain and muscle. These results provide some insights into the regulation mechanism of alternative splicing and may throw light on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Modrek, B., Lee, C.: A genomic view of alternative splicing. Nat. Genet. 30, 13–19 (2002)

    Article  Google Scholar 

  • Lee, C., Atanelov, L., Modrek, B., Xing, Y.: ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res. 31, 101–105 (2003)

    Article  Google Scholar 

  • Black, D.: Protein diversity from alternative splicing: A challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000)

    Article  Google Scholar 

  • Brett, D., Pospisil, H., Valcarcel, J., Reich, J., Bork, P.: Alternative splicing and genome complexity. Nat. Genet. 30, 29–30 (2001)

    Article  Google Scholar 

  • Black, D.: Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003)

    Article  Google Scholar 

  • Bi, J., Xia, H., Li, F., Zhang, X., Li, Y.: The effect of U1 snRNA binding free energy on the selection of 5’ splice sites. Biochem. Biophys. Res. Commun. 333, 64–69 (2005)

    Article  Google Scholar 

  • Zhang, X., Heller, K., Hefter, I., Leslie, C., Chasin, L.: Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Res. 13, 2637–2650 (2003)

    Article  Google Scholar 

  • Fairbrother, W., Yeh, R.-F., Sharp, P., Burge, C.: Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002)

    Article  Google Scholar 

  • Wang, Z., Lo, H.S., Yang, H., Gere, S., Hu, Y., Buetow, K.H., Lee, M.P.: Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer. Cancer Res. 63, 655–657 (2003)

    Google Scholar 

  • Xu, Q., Lee, C.: Discovery of novel splice forms and functional analysis of cancerspecific alternative splicing in human expressed sequences. Nucleic Acids Res. 31, 5635–5643 (2003)

    Article  MathSciNet  Google Scholar 

  • Brudno, M., Gelfand, M., Spengler, S., Zorn, M., Dubchak, I., Conboy, J.: Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Res. 29, 2338–2348 (2001)

    Article  Google Scholar 

  • Yeo, G., Holste, D., Kreiman, G., Burge, C.: Variation in alternative splicing across human tissues. Genome Biol. 5 R74.1–R74.15 (2004)

    Google Scholar 

  • Hui, L., Zhang, X., Wu, X., Lin, Z., Wang, Q., Li, Y., Hu, G.: Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene 23, 3013–3023 (2004)

    Article  Google Scholar 

  • Thanaraj, T.A., Stamm, S., Clark, F., Riethoven, J.-J., Texier, V.L., Muilu, J.: ASD: the Alternative Splicing Database. Nucleic Acids Res. 32, D64–D69 (2004)

    Article  Google Scholar 

  • Xu, Q., Modrek, B., Lee, C.: Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res. 30, 3754–3766 (2002)

    Article  Google Scholar 

  • Lawrence, C.E., Reilly, A.A.: An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins Struct. Funct. Genet. 7, 41–51 (1990)

    Article  Google Scholar 

  • Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36 (1994)

    Google Scholar 

  • Bailey, T.L., Gribskov, M.: Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54 (1998)

    Article  Google Scholar 

  • Wollerton, M.C., Gooding, C., Robinson, F., Brown, E.C., Jackson, R.J., Smith, C.W.J.: Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 7, 819–832 (2001)

    Article  Google Scholar 

  • Sirand-Pugnet, P., Durosay, P., Brody, E., Marie, J.: An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin premRNA. Nucleic Acids Res. 23, 3501–3507 (1995)

    Article  Google Scholar 

  • Miriami, E., Margalit, H., Sperling, R.: Conserved sequence elements associated with exon skipping. Nucleic Acids Res. 31, 1974–1983 (2003)

    Article  Google Scholar 

  • Lian, Y., Garner, H.R.: Evidence for the regulation of alternative splicing via complementary DNA sequence repeats. Bioinformatics 21, 1358–1364 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bi, J., Li, Y. (2006). Identification and Comparison of Motifs in Brain-Specific and Muscle-Specific Alternative Splicing. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_46

Download citation

  • DOI: https://doi.org/10.1007/11750321_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics