Skip to main content

Approximation Algorithms for Capacitated Rectangle Stabbing

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

In the rectangle stabbing problem we are given a set of axis parallel rectangles and a set of horizontal and vertical lines, and our goal is to find a minimum size subset of lines that intersect all the rectangles. We study the capacitated version of this problem in which the input includes an integral capacity for each line that bounds the number of rectangles that the line can cover. We consider two versions of this problem. In the first, one is allowed to use only a single copy of each line (hard capacities), and in the second, one is allowed to use multiple copies of every line provided that multiplicities are counted in the size of the solution (soft capacities).

For the case of d-dimensional rectangle stabbing with soft capacities, we present a 6d-approximation algorithm and a 2-approximation algorithm when d = 1. For the case of hard capacities, we present a bi-criteria algorithm that computes 16d-approximate solutions that use at most two copies of every line. For the one dimensional case, an 8-approximation algorithm for hard capacities is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. In: 43nd IEEE Symposium on Foundations of Computer Science, pp. 481–489 (2002)

    Google Scholar 

  3. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of Algorithms 48(1), 257–270 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. Journal of Algorithms 43, 138–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discrete Applied Mathematics 30(1), 29–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and applications. Theoretical Computer Science 250, 179–200 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approximation algorithm for vertex cover with hard capacities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 164–175. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Even, G., Rawitz, D., Shahar, S.(. (2006). Approximation Algorithms for Capacitated Rectangle Stabbing. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_5

Download citation

  • DOI: https://doi.org/10.1007/11758471_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics