Skip to main content

Diophantine Benchmarks for the B-Cell Algorithm

  • Conference paper
Artificial Immune Systems (ICARIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4163))

Included in the following conference series:

Abstract

The B-cell algorithm (BCA) due to Kelsey and Timmis is a function optimization algorithm inspired by the process of somatic mutation of B cell clones in the natural immune system. So far, the BCA has been shown to be perform well in comparison with genetic algorithms when applied to various benchmark optimisation problems (finding the optima of smooth real functions). More recently, the convergence of the BCA has been shown by Clark, Hone and Timmis, using the theory of Markov chains. However, at present the theory does not predict the average number of iterations that are needed for the algorithm to converge. In this paper we present some empirical convergence results for the BCA, using a very different non-smooth set of benchmark problems. We propose that certain Diophantine equations, which can be reformulated as an optimization problem in integer programming, constitute a much harder set of benchmarks for evolutionary algorithms. In the light of our empirical results, we also suggest some modifications that can be made to the BCA in order to improve its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.: Private communication (2006), opt-aiNet code Available at: http://www.elec.york.ac.uk/ARTIST/code.php

  2. Burger, E.: Exploring the Number Jungle: a Journey into Diophantine Analysis. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  3. de Castro, L., Timmis, J.: An Artificial Immune Network for Multimodal Function Optimisation. In: Proceedings of IEEE World Congress on Evolutionary Computation, pp. 669–674 (2002)

    Google Scholar 

  4. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. Clark, E., Hone, A., Timmis, J.: A Markov Chain Model of the B-Cell Algorithm. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 318–330. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dasgupta, D., McGregor, D.R.: Nonstationary Function Optimization using the Structured Genetic Algorithm, Parallel Problem Solving from Nature 2, Proc. In: 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, pp. 145–154. Elsevier, Amsterdam (1992)

    Google Scholar 

  7. Dasgupta, D.: Handling Deceptive Problems Using a different Genetic Search. In: Proceedings of the First IEEE Conference on Evolutionary Computation 1994, IEEE World Congress on Computational Intelligence, pp. 807–811 (1994)

    Google Scholar 

  8. De Jong, K.: Are genetic algorithms function optimizers? Parallel Problem Solving from Nature 2. In: Proceedings of the Second Conference on Parallel Problem Solving from Nature, pp. 3–13. North-Holland, Brussels (1992)

    Google Scholar 

  9. Dyer, M., Goldberg, L.A., Jerrum, M., Martin, R.: Markov chain comparison. Probability Surveys 3, 89–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gale, D.: The strange and surprising saga of the Somos sequences. Mathematical Intelligence 13 (1), 40–42 (1991)

    Article  Google Scholar 

  11. Hone, A., Kelsey, J.: Optima, extrema, and artificial immune systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 80–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Hone, A.N.W.: Diophantine non-integrability of a third order recurrence with the Laurent property. J. Phys. A: Math. Gen. 39, L171–L177 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hunter, J.J.: Mixing Times with Applications to Perturbed Markov Chains. Institute of Information and Mathematical Sciences, Massey University (preprint, 2003)

    Google Scholar 

  14. Jerrum, M.: Algorithmically feasible sampling: what are the limits? Talk at London Mathematical Society meeting. University College, London (October 7, 2005)

    Google Scholar 

  15. Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 207–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Kelsey, J., Timmis, J., Hone, A.: Chasing Chaos. In: Sarker, R., et al. (eds.) Proceedings of the Congress on Evolutionary Computation, Canberra, Australia, December 2003, pp. 413–419. IEEE, Los Alamitos (2003)

    Google Scholar 

  17. Kelsey, J.: Private communication (2006)

    Google Scholar 

  18. Krishnalumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE Proceedings: Intelligent Control and Adaptive Systems, pp. 289–296 (1987)

    Google Scholar 

  19. Lamlum, H., et al.: The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ’two-hit’ hypothesis. Nature Medicine 5, 1071–1075 (1999)

    Article  Google Scholar 

  20. Lydyard, P., Whelan, A., Fanger, M.: Immunology, 2nd edn. Taylor & Francis, Abington (2004)

    Google Scholar 

  21. Manin, Y.I., Panchishkin, A.A.: Introduction to Modern Number Theory, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  22. Mordell, L.J.: Diophantine Equations. Academic Press, London (1969)

    MATH  Google Scholar 

  23. Timmis, J., Edmonds, C.: A Comment on Opt-AiNET: An Immune Network Algorithm for Optimisation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 308–317. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Convergence analysis of a multiobjective artificial immune system algorithm. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 226–235. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Vose, M.D.: Modeling simple genetic algorithms. Evolutionary Computation 3(4), 453–472 (1996)

    Article  Google Scholar 

  26. Zagier, D.: On the Number of Markoff Numbers Below a Given Bound. Mathematics of Computation 39(160), 709–723 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bull, P., Knowles, A., Tedesco, G., Hone, A. (2006). Diophantine Benchmarks for the B-Cell Algorithm. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_21

Download citation

  • DOI: https://doi.org/10.1007/11823940_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37749-8

  • Online ISBN: 978-3-540-37751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics