Skip to main content

A Light-Based Device for Solving the Hamiltonian Path Problem

  • Conference paper
Unconventional Computation (UC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4135))

Included in the following conference series:

Abstract

In this paper we suggest the use of light for performing useful computations. Namely, we propose a special device which uses light rays for solving the Hamiltonian path problem on a directed graph. The device has a graph-like representation and the light is traversing it following the routes given by the connections between nodes. In each node the rays are uniquely marked so that they can be easily identified. At the destination node we will search only for particular rays that have passed only once through each node. We show that the proposed device can solve small and medium instances of the problem in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Agrawal, G.P.: Fiber-optic communication systems, 3rd edn. Wiley-Interscience, Chichester (2002)

    Book  Google Scholar 

  3. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible manufacturing systems. PhD thesis, TU Berlin (1995)

    Google Scholar 

  4. Černý, V.: Quantum computers and intractable (NP-Complete) computing problems. Phys. Rev. A 48, 116–119 (1993)

    Article  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.R.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Doniach, S., Garel, H., Orland, H.: Phase diagram of a semiflexible polymer chain in a θ solvent: Application to protein folding. Journal of Chemical Physics 105, 1601–1608 (1996)

    Article  Google Scholar 

  7. Faist, J.: Optoelectronics: silicon. Shines on Nature 433, 691–692 (2005)

    Article  Google Scholar 

  8. Flyckt, S.O., Marmonier, C.: Photomultiplier Tubes: Principles and Applications, Photonis, Brive, France (2002)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to NP-Completeness. Freeman & Co. San Francisco (1979)

    MATH  Google Scholar 

  10. Greenwood, G.W.: Finding solutions to NP problems: Philosophical differences between quantum and evolutionary search algorithms. In: Proceedings CEC 2001, pp. 815–822 (2001)

    Google Scholar 

  11. Hartmanis, J.: On the weight of computations. Bulletin of the EATCS 55, 136–138 (1995)

    MATH  Google Scholar 

  12. Hau, L.V., et al.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  Google Scholar 

  13. Lenslet website, http://www.lenslet.com

  14. Liu, C., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  Google Scholar 

  15. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California press, Berkeley (1967)

    Google Scholar 

  16. Paniccia, M., Koehl, S.: The silicon solution. IEEE Spectrum (2005)

    Google Scholar 

  17. Rong, H., et al.: A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005)

    Article  Google Scholar 

  18. Rong, H., et al.: An all-silicon Raman laser. Nature 433, 292–294 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oltean, M. (2006). A Light-Based Device for Solving the Hamiltonian Path Problem. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839132_18

Download citation

  • DOI: https://doi.org/10.1007/11839132_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38593-6

  • Online ISBN: 978-3-540-38594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics