Skip to main content

A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants

  • Conference paper
Computational Life Sciences II (CompLife 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Included in the following conference series:

  • 631 Accesses

Abstract

Misfolding of membrane proteins plays an important role in many human diseases such as retinitis pigmentosa, hereditary deafness, and diabetes insipidus. Little is known about membrane proteins as there are only a very few high-resolution structures. Single molecule force spectroscopy is a novel technique, which measures the force necessary to pull a protein out of a membrane. Such force curves contain valuable information on the protein’s structure, conformation, and inter- and intra-molecular forces. High-throughput force spectroscopy experiments generate hundreds of force curves including spurious ones and good curves, which correspond to different unfolding pathways. As it is not known what is the origin of the interactions that estabilish unfolding barriers, in the present work we analyse the unfolding patterns coming from experiments of unfolding of bacteriorhodopsin and four mutants (P50A, P91A, P186A and M56). We correlate the postition, magnitude and probability of occurrence of force peaks with the results of a bioinformatics analysis of residue conservations, structural alignments and residue-residue contact area in the wild type and in the mutants, in order to gain insights about the interaction pattern stabilizing bacteriorhodopsin structure. From residue-residue contact area calculations we show that the analysed point mutations do not affect the stability of the protein in a significant way. We conclude that, even if the arrangement of intra-moleular interactions locally change in the mutated structures, the overall structural stability is not affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowie, J.U.: Solving the membrane protein folding problem. Nature 438(7068), 581–589 (2005)

    Article  Google Scholar 

  2. Eddy, S.R.: What is dynamic programming? Nature Biotechnology 22(7), 909–910 (2004)

    Article  Google Scholar 

  3. Faham, S., Yang, D., Bare, E., Yohannan, S., Whitelegge, J.P., Bowie, J.U.: Side-chain contributions to membrane protein structure and stability. J. Mol. Biol. 335(1), 297–305 (2004)

    Article  Google Scholar 

  4. Filipek, S., Teller, D.C., Palczewski, K., Stenkamp, R.: The crystallographic model of rhodopsin and its use in studies of other g protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 375–397 (2003)

    Article  Google Scholar 

  5. Holm, L., Park, J.: Dalilite workbench for protein structure comparison. Bioinformatics 16(6), 566–567 (2000)

    Article  Google Scholar 

  6. Janovjak, H., Struckmeier, J., Hubain, M., Kedrov, A., Kessler, M., Muller, D.J.: Probing the energy landscape of the membrane protein br. Structure 12(5), 871–879 (2004)

    Article  Google Scholar 

  7. Janshoff, A., Neitzert, M., Oberdorfer, Y., Fuchs, H.: Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem. Int. Ed Engl. 39(18), 3212–3237 (2000)

    Google Scholar 

  8. Kessler, M., Gottschalk, K.E., Janovjak, H., Muller, D.J., Gaub, H.E.: Bacteriorhodopsin folds into the membrane against an external force. J. Mol. Biol. 357(2), 644–654 (2006)

    Article  Google Scholar 

  9. Kuhn, M., Janovjak, H., Hubain, M., Muller, D.J.: Automated alignment and pattern recognition of single-molecule force spectroscopy data. J. Microsc. 218(Pt 2), 125–132 (2005)

    Article  MathSciNet  Google Scholar 

  10. Marsico, A., Sapra, K.T., Muller, D., Labudde, D., Schroeder, M.: A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single molecule force spectroscopy. J. Bioinformatics (accepted)

    Google Scholar 

  11. Mirzadegan, T., Benko, G., Filipek, S., Palczewski, K.: Sequence analyses of g-protein coupled receptors: similarities to rhodopsin. Biochemistry 42(10), 2759–2767 (2003)

    Article  Google Scholar 

  12. Mogi, T., Stern, L.J., Chao, B.H., Khorana, H.G.: Structure-function studies on bacteriorhodopsin. viii. substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids. J. Biol. Chem. 264(24), 14192–14196 (1989)

    Google Scholar 

  13. Muller, D., Sass, H., Muller, S., Buldt, G., Engel, A.: Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 33(285), 1903–1909 (1999)

    Article  Google Scholar 

  14. Muller, D.J., Kessler, M., Oesterhelt, F., Moller, C., Oesterhelt, D., Gaub, H.: Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys. J. 83(6), 3578–3588 (2002)

    Article  Google Scholar 

  15. Oesterhelt, D., Stoeckenius, W.: Isolation of the cell membrane of halobacterium halobium and its fraction into red and purple membrane. Methods Enzymol. 31, 667–678 (1974)

    Article  Google Scholar 

  16. Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H., Muller, D.J.: Unfolding pathways of individual bacteriorhodopsins. Science 288(5463), 143–146 (2000)

    Article  Google Scholar 

  17. Onuchic, J.N., Wolynes, P.G.: Theory of protein folding. Current Opinion in Structural Biology (14), 70–75 (2004)

    Article  Google Scholar 

  18. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by afm. Science 276(5315), 1109–1112 (1997)

    Article  Google Scholar 

  19. Sander, C., Schneider, R.: Database of homlogy-derived protein structures and structural meaning of sequence alignment. Proteins 101(9), 56–68 (1991)

    Article  Google Scholar 

  20. Sapra, K.T., Besir, H., Oesterhelt, D., Muller, D.J.: Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J. Mol. Biol. 355(4), 640–650 (2006)

    Article  Google Scholar 

  21. Sobolev, V., Eyal, E., Gerzon, S., Potapov, V., Babor, M., Prilusky, J., Edelman, M.: Space: a suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Research 33(4), 39–43 (2005)

    Article  Google Scholar 

  22. Sobolev, V., Sorokine, A., Prilusky, E., Edelman, M.: Automated analysis of interatomic contacts in proteins. Bioinformatics 15(4), 321–332 (1999)

    Article  Google Scholar 

  23. Yohannan, S., Faham, S., Yang, D., Whitelegge, P., Bowie, J.: The evolution of transmembrane helix kinks and the structural diverstity of g protein-coupled receptors. PNAs 101(4), 959–963 (2003)

    Article  Google Scholar 

  24. Zhuang, X., Rief, M.: Single-molecule folding. Curr. Opin. Struct. Biol. 13(1), 88–97 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marsico, A., Sapra, K.T., Muller, D.J., Schroeder, M., Labudde, D. (2006). A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_16

Download citation

  • DOI: https://doi.org/10.1007/11875741_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics