Skip to main content

Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients

  • Conference paper
Computational Life Sciences II (CompLife 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Included in the following conference series:

  • 627 Accesses

Abstract

The construction of gene regulatory models from microarray time-series data has received much attention. Here we propose a method that extends standard correlation networks to incorporate explicit time-slices. The method is applied to a time-series dataset of a study on gene expression in the developmental phase of zebrafish. Results show that the method is able to distinguish real relations between genes from the data. These relations are explicitly placed in time, allowing for a better understanding of gene regulation. The method and data normalisation procedure have been implemented using the R statistical language and are available from http://zebrafish.liacs.nl/supplements.html .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, X., Ye, Y., Subramanian, K.: Interactive analysis of gene interactions using graphical Gaussian model. In: ACM SIGKDD Workshop on Data Mining in Bioinformatics, vol. 3, pp. 63–69 (2003)

    Google Scholar 

  2. Schfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754–764 (2005)

    Article  Google Scholar 

  3. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)

    Article  Google Scholar 

  4. Kellam, P., Liu, X., Martin, N., Orengo, C., Swift, S., Tucker, A.: A framework for modelling virus gene expression data. Intelligent Data Analysis 6(3), 267–279 (2002)

    MATH  Google Scholar 

  5. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 4(3), 228–235 (2003)

    Article  Google Scholar 

  6. Chickering, D., Geiger, D., Heckerman, D.: Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research (1994)

    Google Scholar 

  7. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

  8. Hill, A.: The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965)

    Google Scholar 

  9. Phillips, C., Goodman, K.: The missed lessons of Sir Austin Bradford Hill. Epidemiologic Perspectives & Innovations 1(3) (2004)

    Google Scholar 

  10. Linney, E., Dobbs-McAuliffe, B., Sajadi, H., Malek, R.L.: Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp. Biochem. Physiol. C. Toxicol Pharmacol. 138(3), 351–362 (2004)

    Article  Google Scholar 

  11. Wit, E., McClure, J.: Statistics for microarrays: design, analysis and inference. John Wiley & Sons Ltd., Chichester (2004)

    MATH  Google Scholar 

  12. Pavlidis, P.: Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31(4), 282–289 (2003)

    Article  Google Scholar 

  13. Duboule, D.: The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution. Bioessays 14(6), 375–384 (1992)

    Article  Google Scholar 

  14. Krumlauf, R.: Hox genes in vertebrate development. Cell 78(2), 191–201 (1994)

    Article  Google Scholar 

  15. Prince, V.E., Moens, C.B., Kimmel, C.B., Ho, R.K.: Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125(3), 393–406 (1998)

    Google Scholar 

  16. Thummel, R., Li, L., Tanase, C., Sarras, M.P., Godwin, A.R.: Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev. Biol. 274(2), 318–333 (2004)

    Article  Google Scholar 

  17. Prince, V.E., Joly, L., Ekker, M., Ho, R.K.: Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125(3), 407–420 (1998)

    Google Scholar 

  18. Bel-Vialar, S., Itasaki, N., Krumlauf, R.: Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129(22), 5103–5115 (2002)

    Google Scholar 

  19. Forlani, S., Lawson, K.A., Deschamps, J.: Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130(16), 3807–3819 (2003)

    Article  Google Scholar 

  20. Gaunt, S.J., Strachan, L.: Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev. Dyn. 207(3), 270–280 (1996)

    Article  Google Scholar 

  21. Duboule, D., Doll, P.: The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 8(5), 1497–1505 (1989)

    Google Scholar 

  22. Graham, A., Papalopulu, N., Krumlauf, R.: The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57(3), 367–378 (1989)

    Article  Google Scholar 

  23. Duboule, D.: Vertebrate hox gene regulation: clustering and/or colinearity? Curr. Opin. Genet. Dev. 8(5), 514–518 (1998)

    Article  Google Scholar 

  24. Kmita, M., Duboule, D.: Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631), 331–333 (2003)

    Article  Google Scholar 

  25. de la Fuente, A., Bing, N., Hoeschele, I., Mendes, P.: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18), 3565–3574 (2004)

    Article  Google Scholar 

  26. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995)

    Article  Google Scholar 

  27. Verbeek, F.J., Lawson, K.A., Bard, J.B.: Developmental bioinformatics: linking genetic data to virtual embryos. Int. J. Dev. Biol. 43(7), 761–771 (1999)

    Google Scholar 

  28. Welten, M., De Haan, S., Bertens, L., Noordermeer, J., Lamers, G., Spaink, H., Meijer, A., Verbeek, F.: ZebraFISH: Fluorescent in situ hybridization protocol and 3D images of gene expression patterns. Zebrafish (accepted, 2006)

    Google Scholar 

  29. Knosp, W.M., Scott, V., Bchinger, H.P., Stadler, H.S.: HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis. Development 131(18), 4581–4592 (2004)

    Article  Google Scholar 

  30. Sakaguchi, S., Nakatani, Y., Takamatsu, N., Hori, H., Kawakami, A., Inohaya, K., Kudo, A.: Medaka unextended-fin mutants suggest a role for Hoxb8a in cell migration and osteoblast differentiation during appendage formation. Dev. Biol. 293(2), 426–438 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meuleman, W., Welten, M.C.M., Verbeek, F.J. (2006). Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_23

Download citation

  • DOI: https://doi.org/10.1007/11875741_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics