Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4204))

Abstract

The paper introduces the MST(G,T,W) constraint, which is specified on two graph variables G and T and a vector W of scalar variables. The constraint is satisfied if T is a minimum spanning tree of G, where the edge weights are specified by the entries of W. We develop algorithms that filter the domains of all variables to bound consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron, I.D., Van Hentenryck, P.: A constraint satisfaction approach to the robust spanning tree problem with interval data. In: UAI, pp. 18–25 (2002)

    Google Scholar 

  2. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dooms, G., Katriel, I.: Graph constraints in constraint programming: Weighted spanning trees. Research Report 2006-1, INGI, Belgium (2006)

    Google Scholar 

  6. Eppstein, D.: Finding the k smallest spanning trees. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 38–47. Springer, Heidelberg (1990)

    Google Scholar 

  7. Eppstein, D.: Setting parameters by example. SIAM J. Comput. 32(3), 643–653 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: FOCS 1996, Washington, DC, USA, p. 302. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  9. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In: SODA 2004, pp. 869–878. SIAM, Philadelphia (2004)

    Google Scholar 

  10. Hwang, R., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  11. King, V.: A simpler minimum spanning tree verification algorithm. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 440–448. Springer, Heidelberg (1995)

    Google Scholar 

  12. Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. American Mathematical Society 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  13. Beldiceanu, N., Katriel, I., Lorca, X.: Undirected forest constraints. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 29–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Sellmann, M.: Cost-based filtering for shorter path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica 7, 433–464 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dooms, G., Katriel, I. (2006). The Minimum Spanning Tree Constraint. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_13

Download citation

  • DOI: https://doi.org/10.1007/11889205_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46267-5

  • Online ISBN: 978-3-540-46268-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics