Skip to main content

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography

  • Conference paper
Fault Diagnosis and Tolerance in Cryptography (FDTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4236))

Abstract

We present a new approach to fault tolerant public key cryptography based on redundant arithmetic in finite rings. Redundancy is achieved by embedding non-redundant field or ring elements into larger rings via suitable homomorphisms obtained from modulus scaling. Our approach is closely related to, but not limited by the exact definition of cyclic binary and arithmetic codes. We present a framework for system-designers that allows flexible trade-offs between circuit area and desired level of fault tolerance. Our method applies to arithmetic in prime fields and extension fields of characteristic 2 where it serves two mutually beneficial purposes: The redundancy of the larger ring can be used for error detection, while its modulus has a special low Hamming-weight form, lending itself particularly well to efficient modular reduction.

This work was supported by the National Science Foundation under grants No. NSF-ANI-0112889 (ITR) and No. NSF-ANI-0133297 (CAREER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Google Scholar 

  2. Reyhani-Masoleh, A., Hasan, M.: Error detection in polynomial basis multipliers over binary extension fields. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 515–528. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Reyhani-Masoleh, A., Hasan, M.: Towards fault-tolerant cryptographic computations over finite fields. ACM Transactions on Embedded Computing Systems 3, 593–613 (2004)

    Article  Google Scholar 

  4. Wu, H., Hasan, M., Blake, I., Gao, S.: Finite field multiplier using redundant representation. IEEE Transactions on Computers 51, 1306–1316 (2002)

    Article  MathSciNet  Google Scholar 

  5. Walter, C.: Faster modular multiplication by operand scaling. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 313–323. Springer, Heidelberg (1992)

    Google Scholar 

  6. Öztürk, E., Sunar, B., Savaş, E.: Low-power elliptic curve cryptography using scaled modular arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 92–106. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of weil descent on elliptic curves. Journal of Cryptology 15, 19–46 (2002)

    Article  MathSciNet  Google Scholar 

  8. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, Oxford (2000)

    Google Scholar 

  9. Skorobogatov, S., Anderson, R.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Proudler, I.: Idempotent AN codes. In: IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, London, IEE, pp. 8/1–8/5 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaubatz, G., Sunar, B. (2006). Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds) Fault Diagnosis and Tolerance in Cryptography. FDTC 2006. Lecture Notes in Computer Science, vol 4236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889700_18

Download citation

  • DOI: https://doi.org/10.1007/11889700_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46250-7

  • Online ISBN: 978-3-540-46251-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics