Skip to main content

Two-Tier Relaxed Heaps

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

We introduce an adaptation of run-relaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worst-case cost of O(1) for find–min, insert, and decrease; and the worst-case cost of O(lg n) with at most lg n + 3 lg lg n + O(1) element comparisons for delete, improving the bound of \(3\lg n + O(1)\) on the number of element comparisons known for run-relaxed heaps. Here, n denotes the number of elements stored prior to the operation in question, and lg n equals max{1, log2 n}.

Partially supported by the Danish Natural Science Research Council under contracts 21-02-0501 (project Practical data structures and algorithms) and 272-05-0272 (project Generic programming—algorithms and tools).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 52–58. ACM/SIAM (1996)

    Google Scholar 

  2. Clancy, M.J., Knuth, D.E.: A programming and problem-solving seminar. Technical Report STAN-CS-77-606, Department of Computer Science, Stanford University (1977)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation. Communications of the ACM 31, 1343–1354 (1988)

    Article  MathSciNet  Google Scholar 

  5. Elmasry, A.: Layered heaps. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 212–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Elmasry, A., Jensen, C., Katajainen, J.: A framework for speeding up priority-queue operations. CPH STL Report 2004-3. Department of Computing, University of Copenhagen (2004), available at http://cphstl.dk

  7. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues (2004) (submitted for publication)

    Google Scholar 

  8. Fredman, M.L.: On the efficiency of pairing heaps and related data structures. Journal of the ACM 46, 473–501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: A new form of self-adjusting heap. Algorithmica 1, 111–129 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  11. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM Journal on Computing 15, 964–971 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and Boolean union-find. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 573–582. ACM Press, New York (2002)

    Google Scholar 

  13. Kaplan, H., Tarjan, R.E.: New heap data structures. Technical Report TR-597-99, Department of Computer Science, Princeton University (1999)

    Google Scholar 

  14. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  15. Overmars, M.H., van Leeuwen, J.: Worst-case optimal insertion and deletion methods for decomposable searching problems. Information Processing Letters 12, 168–173 (1981)

    Article  MATH  Google Scholar 

  16. Vuillemin, J.: A data structure for manipulating priority queues. Communications of the ACM 21, 309–315 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7, 347–348 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elmasry, A., Jensen, C., Katajainen, J. (2006). Two-Tier Relaxed Heaps. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_32

Download citation

  • DOI: https://doi.org/10.1007/11940128_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics