Skip to main content

Object Recognition in the Geometric Era: A Retrospective

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

Abstract

Recent advances in object recognition have emphasized the integration of intensity-derived features such as affine patches with associated geometric constraints leading to impressive performance in complex scenes. Over the four previous decades, the central paradigm of recognition was based on formal geometric object descriptions with a focus on the properties of such descriptions under perspective image formation. This paper will review the key advances of the geometric era and investigate the underlying causes of the movement away from formal geometry and prior models towards the use of statistical learning methods based on appearance features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agin, G., Binford, T.: Computer description of curved objects. In: Proceedings 3rd International Conference on Artificial Intelligence, pp. 629–640 (1993)

    Google Scholar 

  2. Agin, G.J.: Representation and Description of Curved Objects. Ph.D thesis, Stanford University (October 1972)

    Google Scholar 

  3. Ambler, A., Barrow, H., Brown, C., Burstall, R., Popplestone, R.: A Versatile Computer-Controlled Assembly System. In: International Joint Conference on Artificial Intelligence, pp. 298–307 (1973)

    Google Scholar 

  4. Ayache, N., Faugeras, O.: HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 44–54 (1986)

    Article  Google Scholar 

  5. Ballard, D.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  6. Belhumeur, P., Kriegman, D.: Learning and recognizing objects using illumination subspaces. In: Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, pp. 270–277 (1996)

    Google Scholar 

  7. Biederman, I.: Human Image Understanding: Recent Research and a Theory. Computer Vision, Graphics and Image Processing 32, 29–73 (1985)

    Article  Google Scholar 

  8. Binford, T.O.: Visual Perception by Computer. In: Proc. IEEE Conf. on Systems and Control (December 1971)

    Google Scholar 

  9. Binford, T.O.: Spatial understanding: the successor system. In: Proceedings of the ARPA Image Understanding Workshop. Defense Advanced Research Projects Agency, pp. 12–20. Morgan Kaufmann Publishers, Inc., San Francisco (1992)

    Google Scholar 

  10. Bolles, R., Cain, R.: Recognizing and locating partially visible objects: The local-feature-focus method. International Journal of Robotics Research 1(3), 57–82 (1982)

    Article  Google Scholar 

  11. Bolles, R., Horaud, R.: 3DPO: A Tree-dimensional Part Orientation System. International Journal of Robotics Research 5(3), 3–26 (1986)

    Article  Google Scholar 

  12. Bolles, R.C., Fischler, M.A.: A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In: International Joint Conference on Artificial Intelligence, Vancouver, Canada, pp. 637–643 (August 1981)

    Google Scholar 

  13. Brooks, R.: Symbolic reasoning among 3D models and 2D images. Artificial Intelligence Journal 17, 285–348 (1982)

    Article  Google Scholar 

  14. Burns, J., Weiss, R., Riseman, E.: The Non-existence of General-case View-Invariants, pp. 120–131. MIT Press, Cambridge (1992)

    Google Scholar 

  15. Canny, J.F.: Finding edges and lines in images. Technical Report AI-TR-720, Massachusets Institute of Technology, Artificial Intelligence Laboratory (June 1983)

    Google Scholar 

  16. Carlsson, S.: Multiple image invariance using the double algebra. In: Mundy, J.L., Zisserman, A., Forsyth, D. (eds.) AICV 1993. LNCS, vol. 825, pp. 145–164. Springer, Heidelberg (1994)

    Google Scholar 

  17. Chakravarty, I.: The use of characteristic views as a basis for the recognition of three-dimensional objects. In: Proc. Society for Photo-Optical Instrumentation Engineers conference on Robot Vision, vol. 336, pp. 37–45 (May 1982)

    Google Scholar 

  18. Clemens, D., Jacobs, D.: Space and time bounds on model indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(10), 1007–1116 (1991)

    Article  Google Scholar 

  19. Clemens, D.T., Jacobs, D.W.: Model group indexing for recognition. In: Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, Maui, HI, pp. 4–9 (June 1991)

    Google Scholar 

  20. Clowes, M.B.: On seeing things. Artificial Intelligence Journal 2, 79–116 (1971)

    Article  Google Scholar 

  21. Cyr, C., Kimia, B.: 3d object recognition using shape similiarity-based aspect graph. In: Proceedings of the International Conference on Computer Vision, Vancouver, Canada, pp. 254–261 (July 2001)

    Google Scholar 

  22. Dickinson, S., Pentland, A., Rosenfeld, A.: 3-d shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, special issue on Interpretation of 3-D Scenes 14(2), 174–198 (1992)

    Article  Google Scholar 

  23. Faugeras, O., Mundy, J., Ahuja, N., Dyer, C., Pentland, A., Jain, R., Ikeuchi, K., Bowyer, K.: Why aspect graphs are not (yet) practical for computer vision. In: IEEE Workshop on Directions in Automated CAD-Based Vision, pp. 98–104 (1991)

    Google Scholar 

  24. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (June 2003)

    Google Scholar 

  25. Firschein, O. (ed.): RADIUS: Image Understanding for Imagery Intelligence. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  26. Fitzgibbon, A.W., Zisserman, A.: Automatic 3D model acquisition and generation of new images from video sequences. In: Proceedings of European Signal Processing Conference (EUSIPCO 1998), Rhodes, Greece, pp. 1261–1269 (1998)

    Google Scholar 

  27. Goad, C.: Special purpose automatic programming for 3d model-based vision. In: Proc. DARPA Image Understanding Workshop, Arlington, VA, pp. 94–104 (June 1983)

    Google Scholar 

  28. Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Constraints. The MIT Press, Cambridge (1990)

    Google Scholar 

  29. Grimson, W.E.L., Lozano-Pérez, T.: Model-based recognition and localization from sparse range or tactile data. International Journal of Robotics Research 3(3), 3–35 (1984)

    Article  Google Scholar 

  30. Guzman, A.: Decomposition of a visual scene into three-dimensional bodies. In: Proceedings Fall Joint Computer Conference, vol. 33, pp. 291–304 (1968)

    Google Scholar 

  31. Guzman, A.: Analysis of curved line drawings using context and global information. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 6, pp. 325–375. John Wiley and Sons, Inc., New York (1971)

    Google Scholar 

  32. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. Technical Report TR-79, MIT Project Mac (October 1970)

    Google Scholar 

  34. Hu, M.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  35. Huffman, D.A.: Impossible Objects as Nonsense Sentences. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 6, pp. 295–324. Edinburgh University Press (1971)

    Google Scholar 

  36. Huttenlocher, D.P., Ullman, S.: Object recognition using alignment. In: Proceedings of the First International Conference on Computer Vision, London, pp. 102–111 (1987)

    Google Scholar 

  37. Ikeuchi, K., Kanade, T.: Applying sensor models to automatic generation of object recognition programs. In: Proc. Second Int’l Conf. Comput. Vision, Tampa, FL, pp. 228–237 (December 1988)

    Google Scholar 

  38. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Koenderink, J.J., van Doorn, A.J.: The singularities of the visual mapping. Biological Cybernetics 24, 51–59 (1976)

    Article  MATH  Google Scholar 

  40. Koenderink, J.J., van Doorn, A.J.: Relief: pictorial and otherwise. Image and Vision Computing 13(5), 321–334 (1995)

    Article  Google Scholar 

  41. Kriegman, D., Ponce, J.: Computing exact aspect graphs of curved objects:solids of revolution. The International Journal of Computer Vision 5(2), 119–136 (1990)

    Article  Google Scholar 

  42. Kurzweil, R.: The age of intelligent machines. MIT Press, Cambridge (1990)

    Google Scholar 

  43. Lamdan, Y., Wolfson, H.J.: Geometric Hashing: A General and Efficient Model-Based Recognition Scheme. In: Proceedings of the 2nd International Conference on Computer Vision, Tampa, Florida, pp. 238–249 (December 1988)

    Google Scholar 

  44. Lazebnik, S., Schmid, C., Ponce, J.: Semi-local affine parts for object recognition. In: British Machine Vision Conference, vol. 2, pp. 779–788 (2004)

    Google Scholar 

  45. Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Dordrecht (1985)

    Google Scholar 

  46. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV 1999: Proceedings of the International Conference on Computer Vision, Washington, DC, USA, vol. 2, p. 1150. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  47. Mackworth, A.K.: Interpreting pictures of polyhedral scenes. Artificial Intelligence Journal 4, 99–118 (1973)

    Google Scholar 

  48. Marr, D.: Vision. W.H. Freeman and Co., New York (1982)

    Google Scholar 

  49. Meer, P., Ramakrishna, S., Lenz, R.: Correspondance of coplanar features through p 2-invariant representations. In: Mundy, J.L., Zisserman, A., Forsyth, D.A. (eds.) AICV 1993. LNCS, vol. 825, pp. 437–492. Springer, Heidelberg (1994)

    Google Scholar 

  50. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, J.A., Matas, F.S., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vision (to appear, 1994)

    Google Scholar 

  51. Moses, Y., Ullman, S.: Limitations of non model-based recognition systems. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 820–828. Springer, Heidelberg (1992)

    Google Scholar 

  52. Mundy, J.L., Heller, A.J.: The evolution and testing of a model-based object recognition system. In: Proceedings of the 3rd International Conference on Computer Vision, Osaka, Japan, December 1990, pp. 268–282. IEEE Computer Society Press, Los Alamitos (1990)

    Chapter  Google Scholar 

  53. Mundy, J.L., Liu, A., Pillow, N., Zisserman, A., Abdallah, S., Utcke, S., Nayar, S.K., Rothwell, C.: An experimental comparison of appearance and geometric model based recognition. In: Object Representation in Computer Vision, pp. 247–269 (1996)

    Google Scholar 

  54. Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)

    Google Scholar 

  55. Murase, H., Nayar, S.: Learning and recognition of 3d objects from appearance. The International Journal of Computer Vision 14(1), 5–24 (1995)

    Article  Google Scholar 

  56. Nevatia, R., Binford, T.O.: Structured descriptions of complex obects. In: Proc. 3rd International Joint Conference on Artificial Intelligence, pp. 641–647 (1973)

    Google Scholar 

  57. Nevatia, R., Binford, T.O.: Description and Recognition of Curved Objects. Artificial Intelligence Journal 8, 77–98 (1977)

    Article  MATH  Google Scholar 

  58. Perkins, W.: A model-based vision system for industrial parts. IEEE Transactions on Computers C-27(2), 126–143 (1978)

    Article  Google Scholar 

  59. Petitjean, S.: The complexity and enumerative geometry of aspect graphs of smooth surfaces (April 1994)

    Google Scholar 

  60. Plantinga, H., Dyer, C.: Visibility, occlusion and the aspect graph. The International Journal of Computer Vision 5(2), 137–160 (1990)

    Article  Google Scholar 

  61. Ponce, J.: Designing tomorrow’s category-level 3D object recognition systems: an international workshop, Taormina, Sicily (September 2003)

    Google Scholar 

  62. Ponce, J., Zisserman, A., Hebert, M. (eds.): ECCV-WS 1996. LNCS, vol. 1144. Springer, Heidelberg (1996)

    Google Scholar 

  63. Pope, A., Lowe, D.: Learning Appearance Models for Object Recognition. In: Ponce, et al (ed.) [62], pp. 201–219

    Google Scholar 

  64. Roberts, L.G.: Machine perception of three-dimensional solids. In: Tippett, J., Berkowitz, D., Clapp, L., Koester, C., Vanderburgh, A. (eds.) Optical and Electrooptical Information processing, pp. 159–197. MIT Press, Cambridge (1965)

    Google Scholar 

  65. Roland, A., Shiman, P.: DARPA and the Quest for Machine Intelligence. MIT Press, Cambridge (2002)

    Google Scholar 

  66. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using affine-invariant patches and multi-view spatial constraints. In: CVPR, pp. 272–280 (2003)

    Google Scholar 

  67. Rothwell, C.: Object recognition through invariant indexing. Oxford University Science Publications. Oxford University Press, Oxford (1995)

    Google Scholar 

  68. Rothwell, C.A., Forsyth, D.A., Zisserman, A., Mundy, J.L.: Extracting projective structure from single perspective views of 3D point sets. In: Proceedings International Joint Conference on Computer Vision, Berlin, Germany, May 1993, pp. 573–582. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  69. Sarkar, S., Boyer, K.L.: Perceptual organization in computer vision: A review and a proposal for a classificatory structure. IEEE Transactions on Systems, Man, and Cybernetics 23, 382–399 (1993)

    Article  Google Scholar 

  70. Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  71. Schmid, C., Bobet, P., Lamiroy, B., Mohr, R.: An image-oriented cad approach. In: Ponce, et al (ed.) [62], pp. 221–246

    Google Scholar 

  72. Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)

    Article  Google Scholar 

  73. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision (October 2003)

    Google Scholar 

  74. Stark, L., Bowyer, K.: Generalized Object Recognition through Reasoning About Association of Function to Structure. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1097–1104 (1991)

    Article  Google Scholar 

  75. Stockman, G.: Object recognition and localization via pose clustering. Computer Vision, Graphics, and Image Processing 40, 361–387 (1987)

    Article  Google Scholar 

  76. Sugihara, K.: Machine Interpretation of Line Drawings. MIT Press, Cambridge (1986)

    Google Scholar 

  77. Tarr, M.J., Pinker, S.: When does human object recognition use a viewer-centered reference frame? Psychological Science 1(42), 253–256 (1990)

    Article  Google Scholar 

  78. Thompson, D.W., Mundy, J.L.: Three-dimensional model matching from an unconstrained viewpoint. In: Proceedings of the International Conference on Robotics and Automation, Raleigh, NC, pp. 208–220 (1987)

    Google Scholar 

  79. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vision 59(1), 61–85 (2004)

    Article  Google Scholar 

  80. Underwood, S.A., Coates, C.L.: Visual Learning from Multiple Views. IEEE Transactions on Computers C-24(6), 651–661 (1975)

    Article  MathSciNet  Google Scholar 

  81. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)

    Google Scholar 

  82. Weinshall, D., Tomasi, C.: Linear and incremental acquisition of invariant shape models from image sequences. In: Proceedings International Joint Conference on Computer Vision, Berlin, Germany, pp. 675–682. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  83. Weiss, I., Ray, M.: Model-based recognition of 3d objects from single images. PAMI 23(2), 116–128 (2001)

    Google Scholar 

  84. Winston, P.H.: The MIT robot. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 7, pp. 431–463. Edinberg University Press (1972)

    Google Scholar 

  85. Zerroug, M., Nevatia, R.: From an intensity image to 3-d segmented descriptions. In: Ponce, J., Hebert, M., Zisserman, A. (eds.) Object Representation in Computer Vision II, pp. 11–24 (1996)

    Google Scholar 

  86. Zisserman, A., Mundy, J., Forsyth, D., Liu, J., Pillow, N., Rothwell, C., Utcke, S.: Class-based grouping in perspective images. In: Proceedings of the 5th International Conference on Computer Vision, Boston, MA, June 1995, pp. 183–188. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mundy, J.L. (2006). Object Recognition in the Geometric Era: A Retrospective. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_1

Download citation

  • DOI: https://doi.org/10.1007/11957959_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics