Skip to main content

Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand–Receptor Complexes

  • Chapter
  • First Online:
Bioactive Conformation II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 273))

Abstract

We describe our work on the quantitative analysis of STD-NMR spectra of reversibly forming ligand–receptorcomplexes. This analysis is based on the theory of complete relaxation and conformational exchange matrixanalysis of saturation transfer (CORCEMA-ST) effects. As part of this work, we have developed two separateversions of the CORCEMA-ST program. The first version predicts the expected STD intensities for a givenmodel of a ligand–protein complex, and compares them quantitatively with the experimental data.This version is very useful for rapidly determining if a model for a given ligand–proteincomplex is compatible with the STD-NMR data obtained in solution. It is also useful in determining theoptimal experimental conditions for undertaking the STD-NMR measurements on a given complex by computersimulations. In the second version of the CORCEMA-ST program, we have implemented a torsion anglerefinement feature for the bound ligand within the protein binding pocket. In this approach, the globalminimum for the bound ligand conformation is obtained by a hybrid structure refinement protocol involvingCORCEMA-ST calculation of intensities and simulated annealing refinement of torsion angles of the boundligand using STD-NMR intensities as experimental constraints to minimize a pseudo-energy function.This procedure is useful in refining and improving the initial models based on crystallography, computerdocking, or other procedures to generate models for the bound ligand within the protein binding pocket compatiblewith solution STD-NMR data. In this chapter we describe the properties of the STD-NMR spectra, includingthe dependence of the intensities on various parameters. We also describe the results of the CORCEMA-STanalyses of experimental STD-NMR data on some ligand–protein complexes to illustrate the quantitativeanalysis of the data using this method. This CORCEMA-ST program is likely to be useful in structure-baseddrug design efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyer B, Weimar T, Peters T (1997) Eur J Biochem 246:705

    Article  CAS  Google Scholar 

  2. Chen A, Shapiro MJ (1998) J Am Chem Soc 120:10258

    Article  CAS  Google Scholar 

  3. Chen A, Shapiro MJ (2000) J Am Chem Soc 122:414

    Article  CAS  Google Scholar 

  4. Klein J, Meinecke R, Mayer M, Mayer B (1999) J Am Chem Soc 121:5336

    Article  CAS  Google Scholar 

  5. Mayer M, Meyer B (1999) Angew Chem Int Ed Engl 35:1784

    Article  Google Scholar 

  6. Vogtherr M, Peters T (2000) J Am Chem Soc 122:6093

    Article  CAS  Google Scholar 

  7. Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstorm M (2000) J Biomol NMR 18:65

    Article  CAS  Google Scholar 

  8. Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B (2001) J Biomol NMR 21:349

    Article  CAS  Google Scholar 

  9. Jahnke W, Perez LB, Paris CG, Strauss A, Fendrich G, Nalin CM (2000) J Am Chem Soc 122:7394

    Article  CAS  Google Scholar 

  10. Hajduk PJ, Olejniczak ET, Fesik SW (1997) J Am Chem Soc 119:12257

    Article  CAS  Google Scholar 

  11. Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ (2002) J Am Chem Soc 124:9984

    Article  CAS  Google Scholar 

  12. Moore JM (1999) Biopolymers 51:221

    Article  CAS  Google Scholar 

  13. Stockman BJ, Farley KA, Angwin DT (2001) Methods Enzymol 338:230

    Article  CAS  Google Scholar 

  14. McCoy MA, Wyss DF (2000) J Biomol NMR 18:189

    Article  CAS  Google Scholar 

  15. McCoy MA, Wyss DF (2002) J Am Chem Soc 124:11758

    Article  CAS  Google Scholar 

  16. Medek A, Hajduk PJ, Mack J, Fesik SW (2000) J Am Chem Soc 122:1241

    Article  CAS  Google Scholar 

  17. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Science 274:1531

    Article  CAS  Google Scholar 

  18. Wyss DF, McCoy MA, Senior MM (2002) Curr Opin Drug Discov Devel 5:630

    CAS  Google Scholar 

  19. Meyer B, Peters T (2003) Angew Chem Int Ed Engl 42:864

    Article  CAS  Google Scholar 

  20. Peters T, Biet T, Herfurth L (2003) Biol Magn Reson 20:287

    Article  CAS  Google Scholar 

  21. Peng JW, Moore J, Abdul-Manan N (2004) Prog Nucl Magn Spectrosc 44:225

    Article  CAS  Google Scholar 

  22. Lepre CA, Moore JM, Peng JW (2004) Chem Rev 104:3641

    Article  CAS  Google Scholar 

  23. Mayer M, Meyer B (2001) J Am Chem Soc 123:6108

    Article  CAS  Google Scholar 

  24. Haselhorst T, Weimar T, Peters T (2001) J Am Chem Soc 123:10705

    Article  CAS  Google Scholar 

  25. Johnson MA, Pinto BM (2002) J Am Chem Soc 124:15368

    Article  CAS  Google Scholar 

  26. Maaheimo H, Kosma P, Brade L, Brade H, Peters T (2000) Biochemistry 39:12778

    Article  CAS  Google Scholar 

  27. Mayer M, James TL (2002) J Am Chem Soc 124:13376

    Article  CAS  Google Scholar 

  28. Benie JB, Moser R, Bauml E, Blass D, Peters T (2003) J Am Chem Soc 125:14

    Article  CAS  Google Scholar 

  29. Claasen B, Axmann M, Meinecke R, Meyer B (2005) J Am Chem Soc 127:916

    Article  CAS  Google Scholar 

  30. Mari S, Serrano-Gomez D, Canada FJ, Corbi AL, Jimenez-Barbero J (2004) Angew Chem Int Ed Engl 44:296

    Article  Google Scholar 

  31. Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutal BA (2004) J Am Chem Soc 126:2390

    Article  CAS  Google Scholar 

  32. Deng H, Cahill S, Kurz L, Callender R (2004) J Am Chem Soc 126:1952

    Article  CAS  Google Scholar 

  33. Moseley HNB, Curto EV, Krishna NR (1995) J Magn Reson Ser B 108:243

    Article  CAS  Google Scholar 

  34. Moseley HNB, Lee W, Arrowsmith CH, Krishna NR (1997) Biochemistry 36:5293

    Article  CAS  Google Scholar 

  35. Krishna NR, Moseley HNB (1999) Structure Computation and Dynamics in Protein NMR. Biol Magn Reson 17:223

    Article  CAS  Google Scholar 

  36. Jayalakshmi V, Krishna NR (2002) J Magn Reson 155:106

    Article  CAS  Google Scholar 

  37. Krishna NR, Jayalakshmi V (2002) J Korean Magn Reson 6:94

    Google Scholar 

  38. Takahashi H, Nakanish T, Kami K, Arata Y, Shimada I (2000) Nat Struct Biol 7:220

    Article  CAS  Google Scholar 

  39. Nakanishi T, Miyazawa M, Sakakura M, Terasawa H, Takahashi H, Shimada I (2002) J Mol Biol 318(2):245–249

    Article  CAS  Google Scholar 

  40. Ramos A, Kelly G, Hollingworth D, Pastore A, Frenkiel T (2000) J Am Chem Soc 122:11311

    Article  CAS  Google Scholar 

  41. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546

    Article  CAS  Google Scholar 

  42. Dellwo MJ, Wand AJ (1993) J Am Chem Soc 115:1886

    Article  CAS  Google Scholar 

  43. Baleja JD, Pon RT, Sykes BD (1990) Biochemistry 29:4828

    Article  CAS  Google Scholar 

  44. Brüschweiler R, Case DA (1994) Prog NMR Spect 26:27

    Article  Google Scholar 

  45. Krishna NR, Agresti DG, Glickson JD, Walter R (1978) Biophys J 24:791

    Article  CAS  Google Scholar 

  46. Xu Y, Sugar IP, Krishna NR (1995) J Biomol NMR 5:37

    Article  CAS  Google Scholar 

  47. Torrey HC (1949) Phys Rev 76:1059

    Article  Google Scholar 

  48. Wagner G, Wuthrich K (1979) J Magn Reson 33:675

    CAS  Google Scholar 

  49. Jayalakshmi V, Krishna NR (2004) J Magn Reson 168:36

    Article  CAS  Google Scholar 

  50. Zabell AP, Post CB (2002) Proteins 46:295

    Article  CAS  Google Scholar 

  51. Meadows RP, Hajduk PJ (1995) J Biomol NMR 5:41

    Article  Google Scholar 

  52. Fahmy A, Wagner G (2002) J Am Chem Soc 124:1241

    Article  CAS  Google Scholar 

  53. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  54. Xu Y, Krishna NR (1995) J Magn Reson Ser B 108:192

    Article  CAS  Google Scholar 

  55. Alotto PG, Eranda C, Brandstatter B, Furntratt G, Magele G, Nervi M, Preis K, Repetto M, Richter KR (1998) IEEE Trans Magn 34:3674

    Article  Google Scholar 

  56. Ng KK, Weis WI (1997) Biochemistry 36:979

    Article  CAS  Google Scholar 

  57. Driscoll PC, Gronenborn AM, Beress L, Clore GM (1989) Biochemistry 28:2188

    Article  CAS  Google Scholar 

  58. Frank M, Lang AB, Wetter T, Lieth CW (2002) In Silico Biol 2:38

    Google Scholar 

  59. Borgias BA, James TL (1989) Methods Enzymol 176:169

    Article  CAS  Google Scholar 

  60. Mertz JE, Guntert P, Wuthrich W, Braun W (1991) J Biomol NMR 1:257

    Article  CAS  Google Scholar 

  61. Bonvin AM, Boelens R, Kaptein R (1991) J Biomol NMR 1:305

    Article  CAS  Google Scholar 

  62. Borgias BA, James TL (1988) J Magn Reson 79:493

    CAS  Google Scholar 

  63. Bhunia A, Jayalakshmi V, Benie AJ, Schuster O, Kelm S, Krishna NR, Peters T (2004) Carbohydr Res 339:259

    Article  CAS  Google Scholar 

  64. May AP, Robinson RC, Vinson M, Crocker PR, Jones EY (1998) Mol Cell 1:719

    Article  CAS  Google Scholar 

  65. Huyer W, Neumaier A (1999) J Global Optimization 14:331

    Article  Google Scholar 

  66. Crocker PR, Vinson M, Kelm S, Drickamer K (1999) Biochem J 341:355

    Article  CAS  Google Scholar 

  67. Palmer AG, Case DA (1992) J Am Chem Soc 114:9059

    Article  CAS  Google Scholar 

  68. Ramakrishnan B, Balaji PV, Qasba PK (2002) J Mol Biol 318:491

    Article  CAS  Google Scholar 

  69. Jayalakshmi V, Biet T, Peters T, Krishna NR (2004) J Am Chem Soc 126:8610

    Article  CAS  Google Scholar 

  70. Jayalakshmi V, Biet T, Peters T, Krishna NR (2005) J Am Chem Soc 127:7261

    Article  CAS  Google Scholar 

  71. Sugawara BY, Iwasaki H (1984) Acta Cryst C 40:389

    Article  Google Scholar 

  72. Gastinel LN, Cambillau C, Bourne Y (1999) EMBO J 18:3546

    Article  CAS  Google Scholar 

  73. Petrova P, Koca J, Imberty A (2001) Eur J Biochem 268:5365

    Article  CAS  Google Scholar 

  74. Biet T, Peters T (2001) Angew Chem Int Ed 40:4189

    Article  CAS  Google Scholar 

  75. Jayalakshmi V, Krishna NR (2005) J Am Chem Soc 127:14080

    Article  CAS  Google Scholar 

  76. Mathews DA, Bolin JT, Burridge JM, Filman DJ, Volz KW, Kaufman BT, Beddell CR, Champness JN, Stammers DK, Kraut J (1985) J Biol Chem 260:381

    Google Scholar 

  77. Yan J, Allen DK, Mo H, Shapiro MJ, Zartler ER (2003) J Magn Reson 163:270

    Article  CAS  Google Scholar 

  78. Feeney J (2000) Angew Chem Int Ed Engl 39:291

    Article  CAS  Google Scholar 

  79. Stockman BJ, Nirmala NR, Wagner G, Delcamp TJ, De Yarman MT, Freisheim JH (1992) Biochemistry 31:218

    Article  CAS  Google Scholar 

  80. Searle MS, Forster MJ, Birdsall B, Roberts GCK, Feeney J, Cheung HTA, Kompis I, Geddes AJ (1988) Proc Natl Acad Sci USA 85:3787

    Article  CAS  Google Scholar 

  81. Stammers DK, Champness JN, Beddell CR, Dann JG, Eliopoulos E, Geddes AJ, Ogg D, North ACT (1987) FEBS Lett 218:178

    Article  CAS  Google Scholar 

  82. Kovalevskaya NV, Smurnyy YD, Polshakov VI, Birdsall B, Bradbury AF, Frenkiel T, Feeney J (2005) J Biomol NMR 33:69

    Article  CAS  Google Scholar 

  83. Groom CR, Thillet J, North ACT, Pictet R, Geddes AJ (1991) J Biol Chem 266:19890

    CAS  Google Scholar 

  84. Berteau O, Sandstorm C, Bielicki J, Anson DS, Kenne L (2003) J Am Chem Soc 125:15296

    Article  CAS  Google Scholar 

  85. Kelley MD, Mancera RL (2004) J Chem Inf Comput Sci 44:1942

    Article  Google Scholar 

  86. Klebe G (2000) J Mol Med 78:269

    Article  CAS  Google Scholar 

  87. Johnson MA, Pinto BM (2004) Carbohydr Res 339:907

    Article  CAS  Google Scholar 

  88. Wen X, Yuan Y, Kuntz DA, Rose DR, Pinto BM (2005) Biochemistry 44:6729

    Article  CAS  Google Scholar 

  89. Shah N, Kuntz DA, Rose DR (2003) Biochemistry 42:13812

    Article  CAS  Google Scholar 

  90. Kuntz DA, Ghavami A, Johnson BD, Pinto BM, Rose DR (2005) Tetrahedron:Asymmetry 16:25

    Article  CAS  Google Scholar 

  91. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639. See also http://autodock.scripps.edu/ , last visited: 8 August 2007

    Google Scholar 

  92. van den Elsen JM, Kuntz DA, Rose DR (2001) EMBO J 20:3008

    Article  Google Scholar 

  93. Yuan Y, Wen X, Sanders DAR, Pinto BM (2005) Biochemistry 44:14080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rama Krishna .

Editor information

Thomas Peters

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krishna, N.R., Jayalakshmi, V. (2007). Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand–Receptor Complexes. In: Peters, T. (eds) Bioactive Conformation II. Topics in Current Chemistry, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2007_144

Download citation

Publish with us

Policies and ethics