Skip to main content

Electrorheological Fluid and Its Applications in Microfluidics

  • Chapter
  • First Online:
Microfluidics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 304))

Abstract

Microfluidics is a low-cost technique for fast-diagnosis and microsynthesis. Within a decade it might become the foundation of point-of-care and lab-on-a-chip applications. With microfluidic chips, high-throughput sample screening and information processing are made possible. The picoliter droplet runs in microfluidic chips are ideal miniaturized vessels for microdetection and microsynthesis. Meanwhile, individual manipulation of microdroplets remains a challenge: the shortcomings in automatic, reliable, and scalable methods for logic control prevent further integration of microfluidic applications. The giant electrorheological fluid (GERF), which is a kind of “smart” colloid, has tunable viscosity under the influence of external electric field. Therefore, GERF is introduced as the active controlling medium, with real-time response in on-chip fluid control. This review article introduces the working principles and fabrication methods of different types of electrorheological fluid, and extensively describes the strategies of GERF-assisted microfluidic controlling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgPDMS:

Silver-PDMS composite

CPDMS:

Carbon-PDMS composite

CPU:

Central processing unit

CTP:

Calcium and titanium precipitate

DNA:

Deoxyribonucleic acid

ERF:

Electrorheological fluid

EWOD:

Electrowetting on dielectric

GERF:

Giant electrorheological fluid

LOC:

Lab-on-a-chip

MCM-41:

Mobil composition of matter no. 41

MWNT:

Multiwall-nanotube

PANI:

Polyaniline

PCR:

Polymerase chain reaction

PDMS:

Polydimethylsiloxane

PM:

Polar-molecule

PMMA:

Poly(methyl metharcylate)

POC:

Point of care

PPY:

Polypyrrole

PS:

Polystyrene

SBA-15:

Santa Barbara amorphous no.15

References

  1. McDonald JC, Duffy DC, Anderson JR et al (2000) Electrophoresis 21:27

    Article  CAS  Google Scholar 

  2. Quake SR, Scherer A (2000) Science 290:1536

    Article  CAS  Google Scholar 

  3. Dudek MM, Lindahl TL, Killard AJ (2010) Anal Chem 82:2029

    Article  CAS  Google Scholar 

  4. Srinivasan V, Pamula VK, Fair RB (2004) Lab Chip 4:310

    Article  CAS  Google Scholar 

  5. Lin BC, Gao Y, Qin JH (2009) J Chin Chem Soc 56:1

    CAS  Google Scholar 

  6. Malic L, Brassard D, Veres T et al (2010) Lab Chip 10:418

    Article  CAS  Google Scholar 

  7. Epstein IR (2007) Science 315:775

    Article  CAS  Google Scholar 

  8. Beer NR, Rose KA, Kennedy IM (2009) Lab Chip 9:841

    Article  CAS  Google Scholar 

  9. Unger MA, Chou H, Thorsen T et al (2000) Science 288:113

    Article  CAS  Google Scholar 

  10. Pollack MG, Fair RB, Shenderov AD (2000) Appl Phys Lett 77:1725

    Article  CAS  Google Scholar 

  11. Fair RB (2007) Microfluid Nanofluid 3:245

    Google Scholar 

  12. Su F, Chakrabarty K, Fair RB (2006) IEEE Trans Comput Aided Des Integr Circ Syst 25:211

    Article  Google Scholar 

  13. Wen W, Huang X, Yang S et al (2003) Nat Mater 2:727

    Article  CAS  Google Scholar 

  14. Tao R, Sun JM (1991) Phys Rev Lett 67:398

    Article  Google Scholar 

  15. Halsey TC (1992) Science 258:761

    Article  CAS  Google Scholar 

  16. Ma H, Wen W, Tam WY et al (2003) Adv Phys 52:343

    Article  CAS  Google Scholar 

  17. Papadopoulos CA (1998) Mechatronics 8:719

    Article  Google Scholar 

  18. Choi W, Tuteja A, McKinley GH (2009) Adv Mater 21:2190

    Article  CAS  Google Scholar 

  19. Hao T (2001) Adv Mater 13:1847

    Google Scholar 

  20. Winslow WM (1949) J Appl Phys 20:1137

    Article  CAS  Google Scholar 

  21. Li Y, Chen Y, Conrad H (1995) ASME 235:29

    Google Scholar 

  22. Conrad H, Li Y, Chen Y (1995) J Rheol 39:1041

    Article  CAS  Google Scholar 

  23. Wu CW, Conrad H (1996) J Phys D 29:3147

    Article  CAS  Google Scholar 

  24. Lu KQ, Shen R, Wang XZ et al (2005) Int J Mod Phys B 19:1065

    Article  CAS  Google Scholar 

  25. Lu KQ, Shen R, Wang XZ et al (2006) Chin Phys 15:2476

    Article  CAS  Google Scholar 

  26. Cheng Y, Wu K, Liu F et al (2010) ACS Appl Mater Interfaces 2:621

    Article  CAS  Google Scholar 

  27. Shen R, Wang X, Lu Y et al (2009) Adv Mater 21:4631

    Article  CAS  Google Scholar 

  28. Shen R, Wang XZ, Wen WJ et al (2005) Int J Mod Phys B 19:1104

    Article  CAS  Google Scholar 

  29. Yin JB, Zhao XP (2004) Chem Mater 16:321

    Article  CAS  Google Scholar 

  30. Zhao XP, Yin JB (2002) Chem Mater 14:2258

    Article  CAS  Google Scholar 

  31. Yin JB, Zhao XP (2006) J Phys Chem B 110:12916

    Article  CAS  Google Scholar 

  32. Yin J, Zhao X, Xiang L et al (2009) Soft Matter 5:4687

    Article  CAS  Google Scholar 

  33. Shen C, Wen W, Yang S et al (2006) J Appl Phys 99:106104

    Article  Google Scholar 

  34. Wen WJ, Huang XX, Sheng P (2004) Appl Phys Lett 85:299

    Article  CAS  Google Scholar 

  35. Li J, Gong X, Chen S et al (2010) J Appl Phys 107:093507

    Article  Google Scholar 

  36. Parmar KPS, Meheust Y, Schjelderupsen B et al (2008) Langmuir 24:1814

    Article  CAS  Google Scholar 

  37. Yoshimoto S (2005) Macromol Rapid Commun 26:857

    Article  CAS  Google Scholar 

  38. Kim JW, Liu F, Choi HJ et al (2003) Polymer 44:289

    Article  CAS  Google Scholar 

  39. Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202

    Article  CAS  Google Scholar 

  40. Cho MS, Choi HJ, Kim KY et al (2002) Macromol Rapid Commun 23:713

    Article  CAS  Google Scholar 

  41. Park SJ, Cho MS, Lim ST et al (2005) Macromol Rapid Commun 26:1563

    Article  CAS  Google Scholar 

  42. Cho MS, Cho YH, Choi HJ et al (2003) Langmuir 19:5875

    Article  CAS  Google Scholar 

  43. Gong X, Wu J, Huang X et al (2008) Nanotechnology 19:165602

    Article  Google Scholar 

  44. Zeng S, Li B, Su X et al (2009) Lab Chip 9:1340

    Article  CAS  Google Scholar 

  45. Hosokawa K, Maeda R (2000) Micromech Microeng 10:415

    Article  CAS  Google Scholar 

  46. Hosokawa K, Fujii T, Endo I (1999) Anal Chem 71:4781

    Article  CAS  Google Scholar 

  47. Groisman A, Enzelberger M, Quake SR (2003) Science 300:955

    Article  CAS  Google Scholar 

  48. Yu Q, Bauer JM, Moore JS et al (2001) Appl Phys Lett 78:2589

    Article  CAS  Google Scholar 

  49. Beebe DJ, Moore JS, Bauer JM et al (2000) Nature 404:588

    Article  CAS  Google Scholar 

  50. Pal R, Yang M, Johnson BN et al (2004) Anal Chem 76:3740

    Article  CAS  Google Scholar 

  51. Elizabeth Hulme S, Shevkoplyas SS, Whitesides GM (2009) Lab Chip 9:79

    Article  Google Scholar 

  52. Zheng Y, Dai W, Wu H (2009) Lab Chip 9:469

    Article  CAS  Google Scholar 

  53. Weibel DB, Kruithof M, Potenta S et al (2005) Anal Chem 77:4726

    Article  CAS  Google Scholar 

  54. Weibel DB, Siegel AC, Lee A et al (2007) Lab Chip 7:1832

    Article  CAS  Google Scholar 

  55. Yoshida K, Kikuchi M, Park JH et al (2002) Sens Actuators A Phys 95:227

    Article  Google Scholar 

  56. Zhang M, Wu J, Niu X et al (2008) Phys Rev E 78:066305

    Article  Google Scholar 

  57. Eddings MA, Johnson MA, Gale BK (2008) J Micromech Microeng 18:067001

    Article  Google Scholar 

  58. Leclerc E, Sakai Y, Fujii T (2003) Biomed Microdevices 5:109

    Article  CAS  Google Scholar 

  59. Moreira NH, Almeida AL, Piazzeta MH et al (2009) Lab Chip 9:115

    Article  CAS  Google Scholar 

  60. Ng JMK, Gitlin I, Stroock AD et al (2002) Electrophoresis 23:3461

    Article  CAS  Google Scholar 

  61. Sia SK, Whitesides GM (2003) Electrophoresis 24:3563

    Article  CAS  Google Scholar 

  62. Niu X, Peng S, Liu L et al (2007) Adv Mater 19:2682

    Article  CAS  Google Scholar 

  63. Niu X, Zhang M, Peng S et al (2007) Biomicrofluidics 1:044101

    Article  Google Scholar 

  64. Liu L, Peng S, Niu X et al (2006) Appl Phys Lett 89:223521

    Article  Google Scholar 

  65. Valero A, Post JN, van Nieuwkasteele JW et al (2008) Lab Chip 8:62

    Article  CAS  Google Scholar 

  66. Fox MB, Esveld DC, Valero A et al (2006) Anal Bio Chem 385:474

    Article  CAS  Google Scholar 

  67. Khine M, Lau A, Ionescu-Zanetti C et al (2005) Lab Chip 5:38

    Article  CAS  Google Scholar 

  68. Young H, Boris R (2003) Sens Actuators A Phys 104:205

    Article  Google Scholar 

  69. Derveaux S, Stubbe BG, Roelant C et al (2008) Anal Chem 80:85

    Article  CAS  Google Scholar 

  70. DeMello AJ (2006) Nature 442:394

    Article  CAS  Google Scholar 

  71. Kutter JP (2000) Trac Trends Anal Chem 19:352

    Article  CAS  Google Scholar 

  72. Wang L, Zhang M, Yang M et al (2009) Biomicrofluidics 3:034105

    Article  Google Scholar 

  73. Nakano M, Katou T, Satou A et al (2002) J Intell Mater Syst Struct 13:503

    Article  Google Scholar 

  74. Niu X, Wen W, Lee YK (2005) Appl Phys Lett 87:243501

    Article  Google Scholar 

  75. Liu L, Chen X, Niu X et al (2006) Appl Phys Lett 89:083505

    Article  Google Scholar 

  76. Niu X, Liu L, Wen W et al (2006) Appl Phys Lett 88:153508

    Article  Google Scholar 

  77. Liu L, Niu X, Wen W et al (2006) Appl Phys Lett 88:173505

    Article  Google Scholar 

  78. Nguyen NT, Truong TQ (2004) Sens Actuators B 97:137–143

    Article  Google Scholar 

  79. Niu X, Zhang M, Wu J et al (2009) Soft Matter 5:576–581

    Article  CAS  Google Scholar 

  80. Zhan W, Crooks R (2003) J Am Chem Soc 125:9934

    Article  CAS  Google Scholar 

  81. Wang X, Zhou J, Tam TK et al (2009) Bioelectrochemistry 77:69

    Article  CAS  Google Scholar 

  82. Thorsen T, Maerkl SJ, Quake SR (2002) Science 298:580

    Article  CAS  Google Scholar 

  83. Rhee M, Burns MA (2009) Lab Chip 9:3131

    Article  CAS  Google Scholar 

  84. Weaver JA, Melin J, Stark D et al (2010) Nat Phys 6:218

    Article  CAS  Google Scholar 

  85. Prakash M, Gershenfeld N (2007) Science 315:832

    Article  CAS  Google Scholar 

  86. Mosadegh B, Kuo C, Tung Y et al (2010) Nat Phys 6:433

    Article  CAS  Google Scholar 

  87. Cheow LF, Yobas L, Kwong D (2007) Appl Phys Lett 90:054107

    Article  Google Scholar 

  88. Srinivasan V, Pamula VK, Fair RB (2004) Anal Chim Acta 507:145

    Article  CAS  Google Scholar 

  89. Pamula VK, Srinivasan V, Chakrapani H et al (2005) Proc IEEE Int Conf Micro Electro Mech Syst MEMS :722

    Google Scholar 

  90. Wang L, Zhang M, Li J et al (2010) Lab Chip 10:2869

    Article  CAS  Google Scholar 

  91. Rhee M, Burns MA (2008) Lab Chip 8:1365

    Article  CAS  Google Scholar 

  92. Liu L, Cao W, Wu J et al (2008) Biomicrofluidics 2:034103

    Article  Google Scholar 

  93. Wheeler AR, Throndset WR, Whelan RJ et al (2003) Anal Chem 75:3581

    Article  CAS  Google Scholar 

  94. Beer NR, Hindson BJ, Wheeler EK et al (2007) Anal Chem 79:8471

    Article  CAS  Google Scholar 

  95. Adleman LM (1994) Science 266:1021

    Article  CAS  Google Scholar 

  96. Benenson Y, Gil B, Ben-Dor U, Adar R et al (2004) Nature 429:423

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is based on work supported by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST) and Hong Kong RGC grants HKUST 603608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L., Gong, X., Wen, W. (2011). Electrorheological Fluid and Its Applications in Microfluidics. In: Lin, B. (eds) Microfluidics. Topics in Current Chemistry, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_148

Download citation

Publish with us

Policies and ethics