Skip to main content

Chemical Biology of Prion Protein: Tools to Bridge the In Vitro/Vivo Interface

  • Chapter
  • First Online:
Prion Proteins

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 305))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPL:

Expressed protein ligation

NCL:

Native chemical ligation

PrP:

Prion protein

PrPC :

The cellular isoform of prion protein

PrPSc :

The pathogenic or scrapie isoform of prion protein

PTS:

Protein trans splicing

rPrP:

Recombinant prion protein

SPPS:

Solid phase peptide synthesis

TEV:

Tobacco etch virus

TSE:

Transmissible spongiform encephalopathy

References

  1. Fischer E (1894) Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  2. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc 76:3115–3121

    Article  Google Scholar 

  3. Meienhofer J, Schnabel E, Bremer H, Brinkhoff O, Zabel R, Sroka W, Klostermeyer H, Brandenburg D, Okuda T, Zahn H (1963) Synthese der Insulinketten und Ihre Kombination zu Insulinaktiven Präparaten. Z Naturforschung B 18:1120–1121

    CAS  Google Scholar 

  4. Katsoyannis PG, Fukuda K, Tometsko A, Suzuki K, Tilak M (1964) Insulin peptides. X. The synthesis of the B-chain of insulin and its combination with natural or synthetis A-chin to generate insulin activity. J Am Chem Soc 86:930–932

    Article  CAS  Google Scholar 

  5. Barany G, Merrifield RB (1980) Solid phase peptide synthesis. In: Gross E, Meienhofer J (eds) The peptides analysis, synthesis, biology, vol 2. Academic, New York, pp 3–284

    Google Scholar 

  6. Merrifield RB (1963) Solid phase peptide synthesis. 1. Synthesis of tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  7. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  Google Scholar 

  8. Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  Google Scholar 

  9. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  CAS  Google Scholar 

  10. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  CAS  Google Scholar 

  11. Barany G, Merrifield RB (1977) New amino protecting group removable by reduction – chemistry of dithiasuccinoyl (dts) function. J Am Chem Soc 99:7363–7365

    Article  CAS  Google Scholar 

  12. Stewart JM, Young JD (1984) Solid phase peptide synthesis. Pierce Chemical Company, Rockford

    Google Scholar 

  13. Wieland T, Bokelmann E, Bauer L, Lang HU, Lau H (1953) *Uber Peptidsynthesen.8. Bildung Von S-Haltigen Peptiden Durch Intramolekulare Wanderung Von Aminoacylresten. Annalen der Chemie-Justus Liebig 583:129–149

    Article  CAS  Google Scholar 

  14. Baca M, Muir TW, Schnölzer M, Kent SBH (1995) Chemical ligation of cysteine-containing peptides: synthesis of a 22 kDa tethered dimer of HIV-1 protease. J Am Chem Soc 117:1881–1887

    Article  CAS  Google Scholar 

  15. Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M (2003) Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. PNAS 100:5075–5080

    Article  CAS  Google Scholar 

  16. Durek T, Torbeev VY, Kent SBH (2007) Convergent chemical synthesis and high-resolution X-ray structure of human lysozyme. PNAS 104:4846–4851

    Article  CAS  Google Scholar 

  17. Pentelute BL, Mandal K, Gates ZP, Sawaya MR, Yeates TO, Kent SBH (2010) Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography. Chem Commun 46:8174–8176

    Article  CAS  Google Scholar 

  18. Bang D, Pentelute BL, Kent SBH (2006) Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew Chem (Engl) 45:3985–3988

    Article  CAS  Google Scholar 

  19. Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34:287–295

    Article  CAS  Google Scholar 

  20. Tatzelt J, Winklhofer KF (2004) Folding and misfolding of the prion protein in the secretory pathway. Amyloid 11:162–172

    Article  CAS  Google Scholar 

  21. Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  CAS  Google Scholar 

  22. Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Article  CAS  Google Scholar 

  23. Noren CJ, Wang JM, Perler FB (2000) Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed Engl 39:451–466

    Article  Google Scholar 

  24. Pereira B, Shemella PT, Amitai G, Belfort G, Nayak SK, Belfort M (2011) Spontaneous proton transfer to a conserved intein residue determines on-pathway protein splicing. J Mol Biol 406:430–442

    Article  CAS  Google Scholar 

  25. Caspi J, Amitai G, Belenkiy O, Pietrokovski S (2003) Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol 50:1569–1577

    Article  CAS  Google Scholar 

  26. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Article  CAS  Google Scholar 

  27. Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  CAS  Google Scholar 

  28. Pellois JP, Muir TW (2005) A ligation and photorelease strategy for the temporal and spatial control of protein function in living cells. Angew Chem (Engl) 44:5713–5717

    Article  CAS  Google Scholar 

  29. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  Google Scholar 

  30. Stahl N, Prusiner SB (1991) Prions and prion proteins. FASEB J 5:2799–2807

    CAS  Google Scholar 

  31. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349

    Article  CAS  Google Scholar 

  32. Kaneko K, Peretz D, Pan KM, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen FE, Baldwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Sci USA 92:11160–11164

    Article  CAS  Google Scholar 

  33. Zhang H, Kaneko K, Nguyen JT, Livshits TL, Baldwin MA, Cohen FE, James TL, Prusiner SB (1995) Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J Mol Biol 250:514–526

    Article  CAS  Google Scholar 

  34. Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M, Tremblay P, Safar J, Prusiner SB, DeArmond SJ, Baldwin MA, Cohen FE (2000) A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J Mol Biol 295:997–1007

    Article  CAS  Google Scholar 

  35. Ball HL, King DS, Cohen FE, Prusiner SB, Baldwin MA (2001) Engineering the prion protein using chemical synthesis. J Pept Res 58:357–374

    Article  CAS  Google Scholar 

  36. Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol 14:994–1006

    Article  CAS  Google Scholar 

  37. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180–182

    Article  CAS  Google Scholar 

  38. Schumacher MC, Resenberger U, Seidel RP, Becker CF, Winklhofer KF, Oesterhelt D, Tatzelt J, Engelhard M (2010) Synthesis of a GPI anchor module suitable for protein post-translational modification. Biopolymers 94:457–464

    Article  CAS  Google Scholar 

  39. Heller U, Winklhofer KF, Heske J, Reintjes A, Tatzelt J (2003) Post-translational import of the prion protein into the endoplasmic reticulum interferes with cell viability: a critical role for the putative transmembrane domain. J Biol Chem 278:36139–36147

    Article  CAS  Google Scholar 

  40. Li A, Dong J, Harris DA (2004) Cell surface expression of the prion protein in yeast does not alter copper utilization phenotypes. J Biol Chem 279:29469–29477

    Article  CAS  Google Scholar 

  41. Dhar T, Mootz HD (2011) Modification of transmembrane and GPI-anchored proteins on living cells by efficient protein trans-splicing using the Npu DnaE intein. Chem Commun 47:3063–3065

    Article  CAS  Google Scholar 

  42. Becker CF, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger PH (2008) Semisynthesis of a glycosylphosphatidylinositol-anchored prion protein. Angew Chem Int Ed Engl 47:8215–8219

    Article  CAS  Google Scholar 

  43. Chu NK, Becker CF (2009) Semisynthesis of membrane-attached prion proteins. Methods Enzymol 462:177–193

    Article  CAS  Google Scholar 

  44. Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–653

    Article  CAS  Google Scholar 

  45. Greene LE, Park YN, Masison DC, Eisenberg E (2009) Application of GFP-labeling to study prions in yeast. Protein Pept Lett 16:635–641

    Article  CAS  Google Scholar 

  46. Kawai-Noma S, Ayano S, Pack CG, Kinjo M, Yoshida M, Yasuda K, Taguchi H (2006) Dynamics of yeast prion aggregates in single living cells. Genes Cells 11:1085–1096

    Article  CAS  Google Scholar 

  47. Giese A, Bieschke J, Eigen M, Kretzschmar HA (2000) Putting prions into focus: application of single molecule detection to the diagnosis of prion diseases. Arch Virol Suppl 161–171

    Google Scholar 

  48. Kawai-Noma S, Pack CG, Kojidani T, Asakawa H, Hiraoka Y, Kinjo M, Haraguchi T, Taguchi H, Hirata A (2010) In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. J Cell Biol 190:223–231

    Article  CAS  Google Scholar 

  49. Sakata H, Horiuchi M, Takahashi I, Kinjo M (2010) Conformational analysis of soluble oligomers of GFP tagged prion protein by fluorescence fluctuation spectroscopy. Curr Pharm Biotechnol 11:87–95

    Article  CAS  Google Scholar 

  50. Medrano AZ, Barmada SJ, Biasini E, Harris DA (2008) GFP-tagged mutant prion protein forms intra-axonal aggregates in transgenic mice. Neurobiol Dis 31:20–32

    Article  CAS  Google Scholar 

  51. Wu YX, Masison DC, Eisenberg E, Greene LE (2006) Application of photobleaching for measuring diffusion of prion proteins in cytosol of yeast cells. Methods 39:43–49

    Article  CAS  Google Scholar 

  52. Vasiljevic S, Ren J, Yao Y, Dalton K, Adamson CS, Jones IM (2006) Green fluorescent protein as a reporter of prion protein folding. Virol J 3:59

    Article  CAS  Google Scholar 

  53. Scheibel T, Bloom J, Lindquist SL (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. PNAS 101:2287–2292

    Article  CAS  Google Scholar 

  54. Wildegger G, Liemann S, Glockshuber R (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat Struct Biol 6:550–553

    Article  CAS  Google Scholar 

  55. Sun Y, Breydo L, Makarava N, Yang Q, Bocharova OV, Baskakov IV (2007) Site-specific conformational studies of prion protein (PrP) amyloid fibrils revealed two cooperative folding domains within amyloid structure. J Biol Chem 282:9090–9097

    Article  CAS  Google Scholar 

  56. Dong J, Castro CE, Boyce MC, Lang MJ, Lindquist S (2010) Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat Struct Mol Biol 17:1422–1430

    Article  CAS  Google Scholar 

  57. Ernst RR (1992) Nobel lecture. Nuclear magnetic resonance Fourier transform spectroscopy. Biosci Rep 12:143–187

    Article  CAS  Google Scholar 

  58. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules (Nobel lecture). Angew Chem Int Ed Engl 42:3340–3363

    Article  CAS  Google Scholar 

  59. Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed 49:8346–8357

    Article  CAS  Google Scholar 

  60. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wüthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645

    Article  CAS  Google Scholar 

  61. Calzolai L, Lysek DA, Perez DR, Guntert P, Wüthrich K (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc Natl Acad Sci USA 102:651–655

    Article  CAS  Google Scholar 

  62. Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wüthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646–650

    Article  CAS  Google Scholar 

  63. Christen B, Wüthrich K, Hornemann S (2008) Putative prion protein from fugu (Takifugu rubripes). FEBS J 275:263–270

    Article  CAS  Google Scholar 

  64. Perez DR, Damberger FF, Wüthrich K (2010) Erratum to “Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein” [J Mol Biol 400/2 (2010) 121–128]. J Mol Biol 402:929–930

    Google Scholar 

  65. Perez DR, Damberger FF, Wüthrich K (2010) Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol 400:121–128

    Article  CAS  Google Scholar 

  66. Ilc G, Giachin G, Jaremko M, Jaremko L, Benetti F, Plavec J, Zhukov I, Legname G (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 5:e11715

    Article  CAS  Google Scholar 

  67. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Google Scholar 

  68. Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci USA 104:18946–18951

    Article  CAS  Google Scholar 

  69. Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci USA 104:1510–1515

    Article  CAS  Google Scholar 

  70. Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP (2010) Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 132:2393–2403

    Article  CAS  Google Scholar 

  71. Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc Natl Acad Sci USA 105:6284–6289

    Article  CAS  Google Scholar 

  72. Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB (2009) Two prion variants of Sup35p have in-register parallel beta-sheet structures, independent of hydration. Biochemistry 48:5074–5082

    Article  CAS  Google Scholar 

  73. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  CAS  Google Scholar 

  74. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  Google Scholar 

  75. Bockmann A, Meier BH (2010) Prions: en route from structural models to structures. Prion 4:72–79

    Article  CAS  Google Scholar 

  76. Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248:1088–1092

    Article  CAS  Google Scholar 

  77. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812

    Article  CAS  Google Scholar 

  78. Klare J, Steinhoff H-J (2009) Spin labeling EPR. Photosynth Res 102:377–390

    Article  CAS  Google Scholar 

  79. Klug CS, Feix JB (2008) Methods and applications of site-directed spin labeling EPR spectroscopy. Methods Cell Biol 84:617–658

    Article  CAS  Google Scholar 

  80. Drew SC, Barnham KJ (2008) Biophysical investigations of the prion protein using electron paramagnetic resonance. Methods Mol Biol 459:173–196

    Article  CAS  Google Scholar 

  81. Lundberg KM, Stenland CJ, Cohen FE, Prusiner SB, Millhauser GL (1997) Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR. Chem Biol 4:345–355

    Article  CAS  Google Scholar 

  82. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  Google Scholar 

  83. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    Article  CAS  Google Scholar 

  84. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  CAS  Google Scholar 

  85. Kozlowski H, Luczkowski M, Remelli M (2010) Prion proteins and copper ions. Biological and chemical controversies. Dalton Trans 39:6371–6385

    Article  CAS  Google Scholar 

  86. Brown DR (2011) Prions and manganese: a maddening beast. Metallomics 3:229–238

    Article  CAS  Google Scholar 

  87. Hornshaw MP, McDermott JR, Candy JM, Lakey JH (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214:993–999

    Article  CAS  Google Scholar 

  88. Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629

    Article  CAS  Google Scholar 

  89. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J Am. Chem Soc 127:12647–12656

    Article  CAS  Google Scholar 

  90. Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1 H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol 346:1393–1407

    Article  CAS  Google Scholar 

  91. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 279:32018–32027

    Article  CAS  Google Scholar 

  92. Masuoka J, Hegenauer J, Van Dyke BR, Saltman P (1993) Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J Biol Chem 268:21533–21537

    CAS  Google Scholar 

  93. Joergstuerenburg H, Oechsner M, Schroeder S, Kunze K (1999) Determinants of the copper concentration in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 67:252–253

    Article  CAS  Google Scholar 

  94. Charveriat M, Reboul M, Wang Q, Picoli C, Lenuzza N, Montagnac A, Nhiri N, Jacquet E, Gueritte F, Lallemand JY, Deslys JP, Mouthon F (2009) New inhibitors of prion replication that target the amyloid precursor. J Gen Virol 90:1294–1301

    Article  CAS  Google Scholar 

  95. Guo K, Mutter R, Heal W, Reddy TR, Cope H, Pratt S, Thompson MJ, Chen B (2008) Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. Eur J Med Chem 43:93–106

    Article  CAS  Google Scholar 

  96. Bertsch U, Winklhofer KF, Hirschberger T, Bieschke J, Weber P, Hartl FU, Tavan P, Tatzelt J, Kretzschmar HA, Giese A (2005) Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol 79:7785–7791

    Article  CAS  Google Scholar 

  97. Bolognesi ML, Ai Tran HN, Staderini M, Monaco A, Lopez-Cobenas A, Bongarzone S, Biarnes X, Lopez-Alvarado P, Cabezas N, Caramelli M, Carloni P, Menendez JC, Legname G (2010) Discovery of a class of diketopiperazines as antiprion compounds. ChemMedChem 5:1324–1334

    Article  CAS  Google Scholar 

  98. Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK (2008) Small-molecule aggregates inhibit amyloid polymerization. Nat Chem Biol 4:197–199

    Article  CAS  Google Scholar 

  99. Winklhofer KF, Tatzelt J (2000) Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected mouse neuroblastoma cells. Biol Chem 381:463–469

    Article  CAS  Google Scholar 

  100. Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, Brumm L, Levy M, Gazit E, Oesterhelt D, Baier M, Becker CF, Engelhard M, Winklhofer KF, Tatzelt J (2008) Green tea extracts interfere with the stress-protective activity of PrP(C) and the formation of PrP(Sc). J Neurochem 107:218–229

    Article  CAS  Google Scholar 

  101. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  CAS  Google Scholar 

  102. Roberts BE, Duennwald ML, Wang H, Chung C, Lopreiato NP, Sweeny EA, Knight MN, Shorter J (2009) A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 5:936–946

    Article  CAS  Google Scholar 

  103. Porat Y, Mazor Y, Efrat S, Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43:14454–14462

    Article  CAS  Google Scholar 

  104. Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53:135–160

    Article  CAS  Google Scholar 

  105. Alavez S, Vantipalli MC, Zucker DJS, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472:226–229

    Article  CAS  Google Scholar 

  106. Brandner S, Raeber A, Sailer A, Blattler T, Fischer M, Weissmann C, Aguzzi A (1996) Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA 93:13148–13151

    Article  CAS  Google Scholar 

  107. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  CAS  Google Scholar 

  108. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    Article  CAS  Google Scholar 

  109. Rambold AS, Muller V, Ron U, Ben-Tal N, Winklhofer KF, Tatzelt J (2008) Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J 27:1974–1984

    Article  CAS  Google Scholar 

  110. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-ß oligomers. Nature 457:1128–1132

    Article  CAS  Google Scholar 

  111. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA, Strittmatter SM (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367–6374

    Article  CAS  Google Scholar 

  112. Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-ß (Aß) oligomers. J Biol Chem 285:26377–26383

    Article  CAS  Google Scholar 

  113. Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Muller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, Multhaup G, Winklhofer KF, Tatzelt J (2011) The cellular prion protein mediates neurotoxic signalling of ß-sheet-rich conformers independent of prion replication. EMBO J 30:2057–2070

    Google Scholar 

  114. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Our work was supported by Max Planck Society. We would like to thank Frederieke Itzen, Claudia Pieczka, and Marc Dittmann for preparation of the figures and Florian Seebeck for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Engelhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seidel, R., Engelhard, M. (2011). Chemical Biology of Prion Protein: Tools to Bridge the In Vitro/Vivo Interface. In: Tatzelt, J. (eds) Prion Proteins. Topics in Current Chemistry, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_201

Download citation

Publish with us

Policies and ethics