Skip to main content

Ecotoxicology of Synthetic Pyrethroids

  • Chapter
  • First Online:
Pyrethroids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 314))

Abstract

In this chapter we review the ecotoxicology of the synthetic pyrethroids (SPs). SPs are potent, broad-spectrum insecticides. Their effects on a wide range of nontarget species have been broadly studied, and there is an extensive database available to evaluate their effects. SPs are highly toxic to fish and aquatic invertebrates in the laboratory, but effects in the field are mitigated by rapid dissipation and degradation. Due to their highly lipophilic nature, SPs partition extensively into sediments. Recent studies have shown that toxicity in sediment can be predicted on the basis of equilibrium partitioning, and whilst other factors can influence this, organic carbon content is a key determining variable. At present for SPs, there is no clear evidence for adverse population-relevant effects with an underlying endocrine mode of action. SPs have been studied intensively in aquatic field studies, and their effects under field conditions are mitigated from those measured in the laboratory by their rapid dissipation and degradation. Studies with a range of test systems have shown consistent aquatic field endpoints across a variety of geographies and trophic states. SPs are also highly toxic to bees and other nontarget arthropods in the laboratory. These effects are mitigated in the field through repellency and dissipation of residues, and recovery from any adverse effects tends to be rapid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskowski D (2002) Physical and chemical properties of pyrethroids. Rev Environ Contamin Toxicol 174:49–170

    CAS  Google Scholar 

  2. Naharashi T (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol 78:1–14

    Article  Google Scholar 

  3. Aldridge WN (1990) An assessment of the toxicological properties of pyrethroids and their neurotoxicity. Crit Rev Toxicol 21:89–104

    Article  CAS  Google Scholar 

  4. Bradberry SM, Cage SA, Proudfoot AT et al (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106

    Article  CAS  Google Scholar 

  5. Hill IR (1985) Effects on non-target organisms in terrestrial and aquatic environments. In: Leahey JP (ed) The pyrethroid insecticides. Taylor & Francis, London

    Google Scholar 

  6. Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8:391

    Article  Google Scholar 

  7. Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659

    Article  CAS  Google Scholar 

  8. Posthuma L, Suter GW II, Traas TP (2001) Species sensitivity distributions in ecotoxicology. CRC, Boca Raton

    Book  Google Scholar 

  9. Maltby L, Blake N, Brock TCM et al (2005) Insecticide species sensitivity distributions: the importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388

    Article  CAS  Google Scholar 

  10. Brock TCM, Alix A, Brown CD et al (2010) Linking aquatic exposure and effects in the risk assessment of plant protection products. SETAC and CRC, Boca Raton

    Google Scholar 

  11. Day KE (1991) Effects of dissolved organic carbon on accumulation and acute toxicity of fenvalerate, Deltamethrin and cyhalothrin to Daphnia magna (Straus). Environ Toxicol Chem 10:91–101

    CAS  Google Scholar 

  12. Yang Y, Hunter W, Tao S et al (2009) Effects of black carbon on pyrethroid availability in sediment. J Agric Food Chem 57:232–238

    Article  CAS  Google Scholar 

  13. Hand LH, Kuet SF, Lane MCG et al (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environ Toxicol Chem 20:1740–1745

    CAS  Google Scholar 

  14. Leistra M, Zweers AJ, Warinton JS et al (2004) Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation and nutrient level. Pest Manag Sci 60:75–84

    Article  CAS  Google Scholar 

  15. Maund SJ, Hamer MJ, Warinton JS et al (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417

    Article  CAS  Google Scholar 

  16. ASTM E1706 (2010) Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. http://www.astm.org. doi: 10.1520/E1706-05R10

  17. US EPA (1996) Whole sediment acute toxicity invertebrates, freshwater. OPPTS 850.1735. US EPA, Washington DC

    Google Scholar 

  18. US EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. EPA 600/R-99/064. US EPA, Washington DC

    Google Scholar 

  19. US EPA (2001) Method for assessing the chronic toxicity of marine and estuarine sediment-associated contaminants with the amphipod Leptocheirus plumulosus. EPA 600/R-01/020. US EPA, Washington DC

    Google Scholar 

  20. US EPA (2009) Whole sediment life cycle toxicity test with Chironomus spp. OPPTS 850.1760 US EPA, Washington DC

    Google Scholar 

  21. US EPA (2009) Whole sediment life cycle toxicity test with Hyalella azteca. OPPTS 850.1770 US EPA, Washington DC

    Google Scholar 

  22. Environment Canada (1997) Test for survival and growth in sediment using larvae of the freshwater midges (Chironomus tentans or Chironomus riparius). Report No. EPS/1/RM/32, Environment Canada, Ottawa

    Google Scholar 

  23. Environment Canada (1997) Test for survival and growth in sediment using the freshwater amphipod Hyalella azteca. Report No. EPS/1/RM/33. Environment Canada, Ottawa

    Google Scholar 

  24. OECD (2004) Sediment-water chironomid toxicity test using spiked sediment. Test Guideline 218. OECD, Paris. doi: 10.1787/9789264070264-en

  25. Maund SJ, Hamer MJ, Lane MCG et al (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin. Environ Toxicol Chem 21:9–15

    Article  CAS  Google Scholar 

  26. Di Toro DM, Zarba CS, Hansen DJ et al (1991) Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  Google Scholar 

  27. Hamer MJ, Goggin UM, Muller K et al (1999) Bioavailability of lambda-cyhalothrin to Chironomus riparius in sediment-water and water-only systems. Aquat Ecosyst Health Manag 2:403–412

    Article  CAS  Google Scholar 

  28. Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24:966–972; Erratum Environ Toxicol Chem 24:1300–1301

    Google Scholar 

  29. Sparks TC, Pavloff AM, Rose RL et al (1983) Temperature-toxicity relationships of pyrethroids on Heliothis virescens (F.) (Lepidoptera: Noctuidae) and Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae). J Econ Entomol 76:243–246

    CAS  Google Scholar 

  30. Bradbury SP, McKim JM, Coats JR (1987) Physiological response of rainbow trout (Salmo gairdneri) to acute fenvalerate intoxication. Pestic Biochem Physiol 27:275–288

    Article  CAS  Google Scholar 

  31. Weston DP, You J, Harwood AD et al (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III. Temperature manipulation. Environ Toxicol Chem 28:173–180

    Article  CAS  Google Scholar 

  32. Giddings JM, Brock TCM, Heger W et al (2002) Guidance document on community level aquatic system studies – interpretation criteria. SETAC, Brussels

    Google Scholar 

  33. Hill IR, Shaw JL, Maund SJ (1994) Review of freshwater field tests with pyrethroid insecticides. In: Hill IR, Heimbach F, Leeuwangh P et al (eds) Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton

    Google Scholar 

  34. Giddings JM, Solomon KR, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids in aquatic ecosystems: 2. Aquatic mesocosm and field studies: observed effects and their ecological significance. Environ Toxicol Chem 20:660–668

    Article  CAS  Google Scholar 

  35. Van Wijngaarden RPA, Brock TCM, Van den Brink PJ (2005) Threshold levels of insecticides in freshwater ecosystems: a review. Ecotoxicology 14:353–378

    Article  Google Scholar 

  36. Maund SJ, Van Wijngaarden R, Roessink I et al (2008) Aquatic fate and effects of lambda-cyhalothrin in model ecosystem experiments. In: Gan J, Spurlock F, Hendley P et al (eds) Synthetic pyrethroids: occurrence and behavior in aquatic environments. ACS Symposium Series 991, American Chemical Society, Washington DC

    Google Scholar 

  37. Brock TCM, Lahr J, Van den Brink PJ (2000) Ecological risks of pesticides in freshwater ecosystems, Part 1: Herbicides. Alterra-Rapport 088, Alterra, Wageningen

    Google Scholar 

  38. Brock TCM, van Wijngaarden RPA, van Geest GJ (2000b) Ecological risks of pesticides in freshwater ecosystems. Part 2: Insecticides. Alterra-Rapport 089, Alterra, Wageningen

    Google Scholar 

  39. Maund SJ, Williams P, Whitfield M et al (2009) The influence of simulated immigration and chemical persistence on recovery of macroinvertebrates from cypermethrin and 3,4-dichloroaniline exposure in aquatic microcosms. Pest Manag Sci 65:678–687

    Article  CAS  Google Scholar 

  40. Hanson ML, Graham DW, Babin E et al (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ Toxicol Chem 26:1265–1279

    Article  CAS  Google Scholar 

  41. Caquet T, Hanson ML, Roucaute M et al (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environ Toxicol Chem 26:1280–1290

    Article  CAS  Google Scholar 

  42. Liess M (1994) Pesticide impact on macroinvertebrate communities of running waters in agricultural systems. Verh Int Ver Limnol 25:2060–2062

    Google Scholar 

  43. Sherratt TN, Roberts G, Williams P et al (1999) A life-history approach to predicting the recovery of aquatic invertebrate populations after exposure to xenobiotic chemicals. Environ Toxicol Chem 18:2512–2518

    Article  CAS  Google Scholar 

  44. Forbes VE, Hommen U, Thorbek P et al (2010) Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future. Int Environ Assess Manage 6:191–193

    Article  Google Scholar 

  45. Colborn T, Fv S, Soto A (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    Article  CAS  Google Scholar 

  46. European Commission (1997) European Workshop on the impact of endocrine disruptors on human health and wildlife. Report of the Proceedings (EUR 17549), Weybridge, UK. European Commission, Brussels

    Google Scholar 

  47. Bars R, Broeckaert F, Fegert I et al (2011) Science based guidance for the assessment of endocrine disrupting properties of chemicals. Regul Toxicol Pharmacol 59:37–46

    Article  CAS  Google Scholar 

  48. Tyler C, Beresford N, van der Woning M et al (2000) Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem 19:801–809

    Article  CAS  Google Scholar 

  49. DeFur P, Crane M, Ingersol C et al (1999) Endocrine disruption in invertebrates: endocrinology, testing and assessment. SETAC Technical Publication Series, Brussels

    Google Scholar 

  50. Chinzei Y, Okuda T, Ando K (1989) Vitellogenin synthesis and ovarian development in nymphal and newly emerged adult female Ornithodoris moubata (Acari: Argasidae). J Med Entomol 26:30–36

    Google Scholar 

  51. Taylor D, Chinzei Y, Ito K et al (1991) Stimulation of vitellogenesis by pyrethroids in mated and virgin female adults, male adults, and fourth instar females of Ornithodorus moubata (Acari: Argasidae). J Med Entomol 28:322–329

    CAS  Google Scholar 

  52. Friesen KJ, Kaufman WR (2003) Cypermethrin inhibits egg development in the ixodid tick, Amblyomma hebraeum. Pestic Biochem Physiol 76:25–35

    Article  CAS  Google Scholar 

  53. Kono Y, Ozeki N (1987) Induction of ovarian development by juvenile hormone and pyrethroids in Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). Appl Entomol Zool 22:68–76

    CAS  Google Scholar 

  54. Moore A, Lower N (2001) The impact of two pesticides on olfactory-mediated endocrine function in mature male Atlantic salmon (Salmo salar L.) parr. Comp Biochem Physiol Part B 129:269–276

    Article  CAS  Google Scholar 

  55. Jaensson A, Scott AP, Moore A et al (2007) Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat Toxicol 81:1–9

    Article  CAS  Google Scholar 

  56. Borgert C, Mihaich E, Quill T, Marty M, Levine S, Becker R (2011) Evaluation of EPA’s Tier 1 endocrine screening battery and recommendations for improving the interpretation of screening results. Regul Toxicol Pharm 59(3):397–411

    Article  CAS  Google Scholar 

  57. Kunimatsu T, Yamada T, Ose K et al (2002) Lack of (anti-)androgenic or estrogenic effects of three pyrethroids (esfenvalerate, fenvalerate, and permethrin) in the Hershberger and uterotrophic assays. Regul Toxicol Pharmacol 35:227–237

    Article  CAS  Google Scholar 

  58. Levin MD (1984) Value of bee pollination to United States agriculture. Am Bee J 124:184–186

    Google Scholar 

  59. Pike KSD, Mayer F, Glazer M et al (1982) Effects of permethrin on mortality and foraging behaviour of honey bees in sweet corn. Environ Entomol 11:951–953

    CAS  Google Scholar 

  60. Oomen PA (1986) A sequential scheme for evaluating the hazard of pesticides to bees Apis mellifera. Med Fac Landbouww Rijksuniv Gent 51/3b:1205–1213

    Google Scholar 

  61. Hagler JR, Waller GD, Lewis BE (1989) Mortality of honeybees (Hymenoptera: Apidae) exposed to permethrin and combinations of permethrin with piperonyl butoxide. J Apic Res 28:208–211

    Google Scholar 

  62. Stevenson JH (1968) Laboratory studies on the acute contact and oral toxicities of insecticides to honeybees. Ann Appl Biol 61:467–472

    Article  CAS  Google Scholar 

  63. Inglesfield C (1989) Pyrethroids and terrestrial non-target organisms. Pestic Sci 27:387–428

    Article  CAS  Google Scholar 

  64. Jepson PC (1993) Insects, spiders and mites. In: Calow P (ed) Handbook of ecotoxicology. Blackwell, Oxford

    Google Scholar 

  65. Felton FC, Oomen PA, Stevenson JH (1986) Toxicity and hazard of pesticides to honeybees: harmonization of test methods. Bee World 67:114–124

    Google Scholar 

  66. Alix A, Lewis G (2010) Guidance for the assessment of risks to bees from use of plant protection products under the framework of Council Directive 91/414 and Regulation 1107/2009. OEPP/EPPO Bull 40:196–203

    Google Scholar 

  67. International Commission for Bee Botany (1980) Symposium on the harmonization of methods for testing the toxicity of pesticides to bees. ICBB, Wageningen

    Google Scholar 

  68. International Commission for Bee Botany (1982) Symposium on the harmonization of methods for testing the toxicity of pesticides to bees. ICBB, Hohenheim

    Google Scholar 

  69. Shires SW (1983) Pesticides and honeybees.Case studies with Ripcord and Fastac. SPAN 26:118–120

    Google Scholar 

  70. Smart LE, Stevenson JH (1982) Laboratory estimation of toxicity of pyrethroid insecticides to honeybees: relevance to hazard in the field. Bee World 63:150–152

    CAS  Google Scholar 

  71. Gerig VL (1979) The toxicity of synthetic pyrethrines to foraging bees. Schweiz Bienen Z 101:228–236

    Google Scholar 

  72. EPPO (1992) Honeybees. European and Mediterranean Plant Protection Organization (EPPO), Paris, pp 1–10

    Google Scholar 

  73. EPPO (2010) Bulletin OEPP/EPPO 40:313–319

    Google Scholar 

  74. Barnett EA, Charlton AJ, Fletcher MR (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag Sci 63:1051–1057

    Article  CAS  Google Scholar 

  75. Pilling ED, Jepson PC (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera L.). Pestic Sci 39:293–297

    Article  CAS  Google Scholar 

  76. Pilling ED, Bromley-Challenor KAC, Walker CH et al (1995) Mechanism of synergism between the pyrethroid insecticide lambda-cyhalothrin and the imidazole fungicide prochloraz in the Honeybee (Apis mellifera L.). Pestic Biochem Physiol 51:1–11

    Article  CAS  Google Scholar 

  77. Tasei JN (2002) Impact of agrochemicals on non-Apis bees. In: Devilliers J, Pham-Delegue M-H (eds) Honey bees: estimating the environmental impact of chemicals. Taylor and Francis, New York

    Google Scholar 

  78. Besard L, Mommaerts V, Vandeven J et al (2010) Compatibility of traditional and novel acaricides with bumblebees (Bombus terrestris): a first laboratory assessment of toxicity and sublethal effects. Pest Manag Sci 66:786–793

    Article  CAS  Google Scholar 

  79. Boller EF, Vogt H, Ternes P et al (2005) Working document on selectivity of pesticides. IOBC/IOBL Report

    Google Scholar 

  80. Barrett KL, Grandy N, Harrison EG et al (1994) Guidance document on regulatory testing procedures for pesticides with non-target arthropods. SETAC, Brussels

    Google Scholar 

  81. OEPP/EPPO (1994) Decision making scheme for the environmental risk assessment of plant protection products. Chap. 9: Arthropod natural enemies. OEPP/EPPO Bull 24(1):17–35

    Google Scholar 

  82. Candolfi M, Bigler F, Campbell P et al (2000) Principles of regulatory testing and interpretation of semi-field and field studies with non-target arthropods. J Pest Sci 73:141–147

    Google Scholar 

  83. Grimm C, Schmidli H, Bakker F et al (2001) Use of standard toxicity tests with Typhlodromus pyri and Aphidius rhopalosiphi to establish a dose response relationship. J Pest Sci 74:72–84

    Article  Google Scholar 

  84. Candolfi M, Barrett KL, Campbell PJ et al (2001) Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods. From SETAC ESCORT2 Workshop, Wageningen, 21–23 Mar 2000. SETAC, Brussels

    Google Scholar 

  85. ESCORT3 (2010) Linking non-target arthropod testing risk assessment with protection goals. From SETAC ESCORT3 Workshop, Wageningen 19 Nov 2010. SETAC, Brussels

    Google Scholar 

  86. Campbell PJ, Brown KC, Harrison EG et al (2000) A hazard quotient approach for assessing the risk to non-target arthropods from plant protection products under 91/414/EEC: hazard quotient trigger value proposal and validation. J Pest Sci 73:117–124

    Google Scholar 

  87. Rubach MN, Ashauer R, Buchwalter DB et al (2011) Framework for trait-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Maund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maund, S.J. et al. (2011). Ecotoxicology of Synthetic Pyrethroids. In: Matsuo, N., Mori, T. (eds) Pyrethroids. Topics in Current Chemistry, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_260

Download citation

Publish with us

Policies and ethics