Skip to main content

Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel Implications for Reactivity

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314(5802):1124

    Article  CAS  Google Scholar 

  2. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49(8):1402

    Article  CAS  Google Scholar 

  3. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49(1):46

    Article  CAS  Google Scholar 

  4. Jiang C, Blacque O, Berke H (2009) Metal-free hydrogen activation and hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene. Chem Commun 37:5518

    Article  Google Scholar 

  5. Jiang C, Blacque O, Berke H (2009) Metal-free hydrogen activation by the frustrated Lewis pairs of CIB(C6F5)2 and HB(C6F5)2 and bulky Lewis bases. Organometallics 28:5233

    Article  CAS  Google Scholar 

  6. Jiang C, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40:1091

    Article  Google Scholar 

  7. Jiang C, Blacque O, Fox T, Berke H (2011) Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organomet 30:2117

    Article  CAS  Google Scholar 

  8. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) B-N compounds for chemical hydrogen storage. Chem Soc Rev 38(1):279

    Article  CAS  Google Scholar 

  9. Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417(6888):507

    Article  CAS  Google Scholar 

  10. Watson PL (1983) Methane exchange-reactions of lanthanide and early-transition-metal methyl complexes. J Am Chem Soc 105(21):6491

    Article  CAS  Google Scholar 

  11. Thompson ME, Baxter SM, Bulls R, Burger BJ, Nolan MC, Santsiero BD, Schaefer WP, Bercaw JE (1987) Alpha-bond metathesis for C-H bonds of hydrocarbons and Sc-H, Sc-alyl, Sc-aryl bonds of permethylscandocene derivatives – evidence for noninvolvement of the pi-system in electrophilic activation of aromatic and vinylic C-H bonds. J Am Chem Soc 109(1):203

    Article  CAS  Google Scholar 

  12. Steigerwald ML, Goddard WA (1984) 2s + 2s reactions at transition-metals. 1. The reactions of D2 with Cl2TiH+, Cl2TiH+, and Cl2ScH. J Am Chem Soc 106(2):308

    Article  CAS  Google Scholar 

  13. Cundari TR (1992) Methane activation by group-IVB imido complexes. J Am Chem Soc 114(26):10557

    Article  CAS  Google Scholar 

  14. Cummins CC, Baxter SM, Wolczanski PT (1988) Methane and benzene activation via transient (tert-Bu3SiNH)2Zr═NSi-tert-Bu3. J Am Chem Soc 110(26):8731

    Article  CAS  Google Scholar 

  15. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40(1):40

    Article  CAS  Google Scholar 

  16. Chakraborty S, Blacque O, Fox T, Berke H (2012) Cheap metals for nobel tasks: synthesis and catalytic activity of molybdenum and tungsten nitrosyl hydride complexes bearing a triphosphine chelate ligand (submitted)

    Google Scholar 

  17. Cui W, Li S, Wayland BB (2007) Factors contributing to one-electron metalloradical activation of ethene and carbon monoxide illustrated by reactions of Co(II), Rh(II), and Ir(II) porphyrins. J Organomet Chem 692(15):3198

    Article  CAS  Google Scholar 

  18. Zhang XX, Parks GF, Wayland BB (1997) One-electron activation of CO by a rhodium(II) porphyrin bimetalloradical complex and concerted reactions of two (RhCO) units. J Am Chem Soc 119(34):7938

    Article  CAS  Google Scholar 

  19. Wayland BB, Ba SJ, Sherry AE (1992) Reactions of H2(D2) with rhodium(II) metalloradical – kinetic evidence for a 4-centered transition-state. Inorg Chem 31(1):148

    Article  CAS  Google Scholar 

  20. Spies P, Frohlich R, Kehr G, Erker G, Grimme S (2008) Structural importance of secondary interactions in molecules: origin of unconventional conformations of phosphine-borane adducts. Chem A Eur J 14(3):779

    Article  CAS  Google Scholar 

  21. Spies P, Schwendemann S, Lange S, Kehr G, Frohlich R, Erker G (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed 47(39):7543

    Article  CAS  Google Scholar 

  22. Mahdi T, Heiden ZM, Grimme S, Stephan DW (2012) Metal-free aromatic hydrogenation: aniline to cyclohexyl-amine derivatives. J Am Chem Soc 134(9):4088

    Article  CAS  Google Scholar 

  23. Lindqvist M, Sarnela N, Sumerin V, Chernichenko K, Leskelae M, Repo T (2012) Heterolytic dihydrogen activation by B(C6F5)3 and carbonyl compounds. Dalton Trans 41(15):4310

    Article  CAS  Google Scholar 

  24. Sumerin V, Schulz F, Nieger M, Leskela M, Repo T, Rieger B (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed 47(32):6001

    Article  CAS  Google Scholar 

  25. Sumerin V, Chernichenko K, Nieger M, Leskelae M, Rieger B, Repo T (2011) Highly active metal-free catalysts for hydrogenation of unsaturated nitrogen-containing compounds. Adv Synth Catal 353(11–12):2093

    Article  CAS  Google Scholar 

  26. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130(43):14117

    Article  CAS  Google Scholar 

  27. Berke H (2010) Conceptual approach to the reactivity of dihydrogen. Chemphyschem 11(9):1837

    CAS  Google Scholar 

  28. Fernandez I, Sierra MA, Cossio FP (2007) In-plane aromaticity in double group transfer reactions. J Org Chem 72(4):1488

    Article  CAS  Google Scholar 

  29. Fernandez I, Bickelhaupt FM, Cossio FP (2012) Type-I dyotropic reactions: understanding trends in barriers. Chem Eur J 18(39):12517

    Google Scholar 

  30. Arrieta A, de Cozar A, Cossio FP (2011) Cyclic electron delocalization in pericyclic reactions. Curr Org Chem 15(20):3594

    Article  CAS  Google Scholar 

  31. Robertson APM, Leitao EM, Manners I (2011) Catalytic redistribution and polymerization of diborazanes: unexpected observation of metal-free hydrogen transfer between aminoboranes and amine-boranes. J Am Chem Soc 133(48):19322

    Article  CAS  Google Scholar 

  32. Leitao EM, Stubbs NE, Robertson APM, Helten H, Cox RJ, Lloyd-Jones GC, Manners I (2012) Mechanism of metal-free hydrogen transfer between amine–boranes and aminoboranes. J Am Chem Soc 134(40):16805–16816

    Article  CAS  Google Scholar 

  33. Node M, Kajimoto T, Ozeki M (2010) Development of novel asymmetric reactions and their application to the synthesis of natural products. Heterocycles 81(5):1061

    Article  CAS  Google Scholar 

  34. Budzelaar PHM, Talarico G (2003) Struct Bond (Berlin Germany) 105(Group13, Chemistry III):141

    CAS  Google Scholar 

  35. Doering WV, Young RW (1950) Partially asymmetric Meerwein–Ponndorf–Verley reactions. J Am Chem Soc 72(1):631

    Article  CAS  Google Scholar 

  36. Yang X, Zhao L, Fox T, Wang Z-X, Berke H (2010) Transfer hydrogenation of imines with ammonia-borane: a concerted double-hydrogen-transfer reaction. Angew Chem Int Ed 49(11): 2058

    Article  CAS  Google Scholar 

  37. Yang X, Fox T, Berke H (2012) Synthetic and mechanistic studies of metal-free transfer hydrogenations applying polarized olefins as hydrogen acceptors and amine borane adducts as hydrogen donors. Org Biomol Chem 10(4):852

    Article  CAS  Google Scholar 

  38. Yang X, Fox T, Berke H (2011) Facile metal free regioselective transfer hydrogenation of polarized olefins with ammonia borane. Chem Commun 47(7):2053

    Article  CAS  Google Scholar 

  39. Yang X, Fox T, Berke H (2011) Ammonia borane as a metal free reductant for ketones and aldehydes: a mechanistic study. Tetrahedron 67(37):7121

    Article  CAS  Google Scholar 

  40. Pons V, Baker RT, Szymczak NK, Heldebrandt DJ, Linehan JC, Matus MH, Grant DJ, Dixon DA (2008) Coordination of aminoborane, NH2BH2, dictates selectivity and extent of H2 release in metal-catalysed ammonia borane dehydrogenation. Chem Commun (48):6597

    Google Scholar 

  41. Shvo Y, Czarkie D, Rahamim Y, Chodosh DF (1986) A new group of ruthenium complexes – structure and catalysis. J Am Chem Soc 108(23):7400

    Article  CAS  Google Scholar 

  42. Blum Y, Czarkie D, Rahamim Y, Shvo Y (1985) (Cyclopentadienone)ruthenium carbonyl complexes – a new class of homogeneous hydrogenation catalysts. Organometallics 4(8):1459

    Article  CAS  Google Scholar 

  43. Comas-Vives A, Ujaque G, Lledos A (2007) Hydrogen transfer to ketones catalyzed by Shvo’s ruthenium hydride complex: a mechanistic insight. Organometallics 26:4135

    Article  CAS  Google Scholar 

  44. Conley BL, Pennington-Boggio MK, Boz E, Williams TJ (2010) Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev 110(4):2294

    Article  CAS  Google Scholar 

  45. Casey CP, Singer SW, Powell DR, Hayashi RK, Kavana M (2001) Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: evidence for concerted hydride and proton transfer. J Am Chem Soc 123(6):1090

    Article  CAS  Google Scholar 

  46. Casey CP, Strotman NA, Beetner SE, Johnson JB, Priebe DC, Vos TE, Khodavandi B, Guzei IA (2006) The PPh3-substituted hydroxycyclopentadienyl ruthenium hydride 2,5-Ph-2-3,4-tol(2)(eta(5)-C4COH) Ru(CO)(PPh3)H is a more efficient catalyst for hydrogenation of aldehydes. Organometallics 25(5):1230

    Article  CAS  Google Scholar 

  47. Noyori R, Hashiguchi S (1997) Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc Chem Res 30:97

    Article  CAS  Google Scholar 

  48. Clapman SE, Hazdovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201

    Article  Google Scholar 

  49. Gunanathan C, Milstein D (2011) Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and “green” catalysis. Acc Chem Res 44(8):588

    Article  CAS  Google Scholar 

  50. Ikariya T (2011) Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Top Organomet Chem 37:31

    Article  CAS  Google Scholar 

  51. Ikariya T (2011) Chemistry of concerto molecular catalysis based on the metal/NH bifunctionality. Bull Chem Soc Jpn 84(1):1

    Article  CAS  Google Scholar 

  52. Ikariya T, Blacker AJ (2007) Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular. Acc Chem Res 40(12):1300

    Article  CAS  Google Scholar 

  53. Ikariya T, Murata K, Noyori R (2006) Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Org Biomol Chem 4:393

    Article  CAS  Google Scholar 

  54. Landwehr A, Dudle B, Fox T, Blacque O, Berke H (2012) Bifunctional rhenium complexes for the catalytic transfer-hydrogenation reactions of ketones and imines. Chem Eur J 18(18):5701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Berke .

Editor information

Editors and Affiliations

Additional information

Dedicated to Nobel Laureate Roald Hoffmann on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berke, H., Jiang, Y., Yang, X., Jiang, C., Chakraborty, S., Landwehr, A. (2013). Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel Implications for Reactivity. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_400

Download citation

Publish with us

Policies and ethics