Skip to main content

The Role of Metals and Ligands in Organic Hydroformylation

  • Chapter
  • First Online:
Hydroformylation for Organic Synthesis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 342))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

acac:

Acetylacetonate

bcope:

Bis(cyclooctyl)phosphinoethane

BDP:

Bisdiazaphospholane

Biphephos:

6,6′-[(3,3′-Di-tert-butyl-5,5′-dimethoxy-1,1′-biphenyl-2,2′-diyl)bis(oxy)]bis(dibenzo[d,f][1,3,2]dioxaphosphepin)

Bisbi:

2,2′-Bis-((dipheny1phosphino)methyl)-1,l′-biphenyl

Boc:

tert-Butoxycarbonyl

BTAC:

Benzyl triethylammonium chloride

COD:

1,5-Cyclooctadiene

CTAC:

Cetyltrimethylammonium chloride

dppb:

Bis(diphenylphosphino)butane

dppe:

Bis(diphenylphosphino)ethane

dppf:

Bis(diphenylphosphino)ferrocene

dr:

Diastereomeric ratio

ee:

Enantiomeric excess

h:

Hour(s)

HPA:

Heteropolyacids

i-Pr:

Isopropyl

L:

Liter(s)

l/b :

Linear to branched aldehyde ratio

MeO:

Methoxy

mol:

Mole(s)

NHC:

N-Heterocyclic carbene ligand

NMP:

N-Methylpyrrolidone

PhO:

Phenoxy

s:

Second(s)

Tangphos:

(1S,1S′,2R,2R′)-1,1′-Di-tert-butyl-(2,2′)-diphospholane

t-Bu:

tert-Butyl

TMS:

Trimethylsilyl

TOF:

Turnover frequency

TPPMS:

(Meta-sulfonatophenyl)diphenylphosphine

TPPTS:

Tris(meta-sulfonatophenyl)phosphine

Xanthphos:

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

References

  1. Bohnen HW, Cornils B (2002) Adv Catal 47:1

    CAS  Google Scholar 

  2. Parshall GW (1980) Homogeneous catalysis. Wiley-Interscience, New York

    Google Scholar 

  3. Beller M, Bohm C (eds) (2004) Transition metals for organic synthesis: building blocks and fine chemicals, vol 1&2. Wiley-VCH, Weinheim

    Google Scholar 

  4. van Leeuwen PWNM, Claver C (2001) Rhodium catalyzed hydroformylation. Kluwer, Dordrecht

    Google Scholar 

  5. Cornils B, Herrmann WA (eds) (1998) Aqueous-phase organometallic catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  6. Ungvary F (2002) Coord Chem Rev 228:61–82

    CAS  Google Scholar 

  7. Ungvary F (2003) Coord Chem Rev 241:295–312

    CAS  Google Scholar 

  8. Ungvary F (2004) Coord Chem Rev 248:867–880

    CAS  Google Scholar 

  9. Ungvary F (2005) Coord Chem Rev 249:2946–2961

    CAS  Google Scholar 

  10. Ungvary F (2007) Coord Chem Rev 251:2072–2086

    CAS  Google Scholar 

  11. Ungvary F (2007) Coord Chem Rev 251:2087–2102

    CAS  Google Scholar 

  12. Wiese K-D, Obst D (2006) Top Organomet Chem 18:1–33

    CAS  Google Scholar 

  13. Behr A, Vorholt AJ (2012) Top Organomet Chem 39:103–128

    CAS  Google Scholar 

  14. Whiteker GT, Cobley CJ (2012) Top Organomet Chem 42:35–46

    CAS  Google Scholar 

  15. Chaudhari RV (2012) Top Catal 55:439–445

    CAS  Google Scholar 

  16. Puckette TA (2012) Top Catal 55:421–425

    CAS  Google Scholar 

  17. Cornils B, Kuntz EG (1985) J Organomet Chem 502:177–186

    Google Scholar 

  18. Barbaro P, Liguori F (eds) (2010) Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. Springer, Dordrecht

    Google Scholar 

  19. Frohning CD, Kohlpaintner CD, Bohnen H-W (2002) In: Cornils B, Hermann WA (eds) Applied homogeneous catalysis with organometallic compounds. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  20. Pruchnik FP (1990) Organometallic chemistry of transition elements. Plenum, New York

    Google Scholar 

  21. Li C, Widjaja E, Chew W, Garland M (2002) Angew Chem Int Ed 41:3785–3789

    Google Scholar 

  22. Hebrard F, Kalck P (2009) Chem Rev 109:4272–4282

    CAS  Google Scholar 

  23. Kamer PCJ, van Rooy A, Schoemaker GC, van Leeuwen PNWM (2004) Coord Chem Rev 248:2409–2424

    CAS  Google Scholar 

  24. Damoense L, Datt M, Green M, Steenkamp C (2004) Coord Chem Rev 248:2393–2407

    CAS  Google Scholar 

  25. Gil W, Trzeciak AM (2011) Coord Chem Rev 255:473–483

    CAS  Google Scholar 

  26. Arntz D, Wiegand N (1991) US Patent 5,015,789

    Google Scholar 

  27. Tsunoi S, Ryu I, Sonoda N (1994) J Am Chem Soc 116:5473

    CAS  Google Scholar 

  28. Fell B, Rupilius W (1969) Tetrahedron Lett 2721–2723

    Google Scholar 

  29. Fell B, Bahrmann H (1977) J Mol Catal 2:211–218

    CAS  Google Scholar 

  30. Fell B, Hermanns P (1994) EP 643.031

    Google Scholar 

  31. Pagar NS, Deshpande RM, Chaudhari RV (2006) Catal Lett 110:129–133

    CAS  Google Scholar 

  32. He D, Pang D, Wei L, Chen Y, Wang T, Wang Z, Liu J, Liu Y, Zhu Q (2002) Catal Commun 3:429–433

    CAS  Google Scholar 

  33. Bortenschlager M, Schütz J, von Preysing D, Nuyken O, Herrmann WA, Weberskirch R (2005) J Organomet Chem 690:6233–6237

    CAS  Google Scholar 

  34. Moores A, Mezailles N, Ricard L, Le Floch P (2005) Organometallics 24:508–513

    CAS  Google Scholar 

  35. El Ali B, Tijani J, Fettouhi M, Al-Arfaj A, El-Faer M (2005) Appl Organomet Chem 19:329–338

    CAS  Google Scholar 

  36. Bruss AJ, Gelesky MA, Machado G, Dupont J (2006) J Mol Catal A Chem 252:212–218

    CAS  Google Scholar 

  37. Xu Y, Wang Y, Zeng Y, Jiang J, Jin Z (2012) Catal Lett 142:914–919

    CAS  Google Scholar 

  38. Van Winkle JL, Lorenzo S, Morris RC, Mason RF (1969) US Patent 3,420,898

    Google Scholar 

  39. Birbeck JM, Haynes A, Adams H, Damoense L, Otto S (2012) ACS Catal 2:2512–2523

    CAS  Google Scholar 

  40. Steynberg JP, van Rensburg H, Cronje CJ, Otto S, Crause C (2003) WO Patent 2003068719

    Google Scholar 

  41. Frankel EN, Metlin S, Rohwedder WK, Wender I (1969) J Am Oil Chem Soc 46:133–138

    CAS  Google Scholar 

  42. Srivastava VK, Bhatt SD, Shukla RS, Bajaj HC, Jasra RV (2005) React Kinet Catal Lett 85:3–9

    CAS  Google Scholar 

  43. Rosi L, Bini A, Frediani P, Bianchi M, Salvini A (1996) J Mol Catal A Chem 112:367–383

    CAS  Google Scholar 

  44. Li B, Li X, Asami K, Fujimoto K (2003) Energy Fuel 17:810–816

    CAS  Google Scholar 

  45. Ma L, Peng Q, He D (2009) Catal Lett 130:137–146

    CAS  Google Scholar 

  46. Cai Z, Wang H, Ziao C, Zhong M, Ma D, Kou Y (2010) J Mol Catal A Chem 330:94–98

    CAS  Google Scholar 

  47. Süss-Fink G, Reiner J (1982) J Mol Catal 16:231–242

    Google Scholar 

  48. Süss-Fink G, Schmidt GF (1987) J Mol Catal 42:361–366

    Google Scholar 

  49. Knifton JF (1988) J Mol Catal 43:65–77

    Google Scholar 

  50. Hayashi T, Gu ZH, Sakakura T, Tanaka M (1988) J Organomet Chem 352:373–378

    CAS  Google Scholar 

  51. Mitsudo T, Suzuki N, Kondo T, Watanabe Y (1996) J Mol Catal A Chem 109:219–225

    CAS  Google Scholar 

  52. Melean LG, Rodriguez M, Romero M, Alvarado ML, Rosales M, Baricelli PJ (2011) Appl Catal A Gen 394:117–123

    CAS  Google Scholar 

  53. Takahashi K, Yamashita M, Tanaka Y, Nozaki K (2012) Angew Chem Int Ed 51:4383–4387

    CAS  Google Scholar 

  54. Tominaga K, Sasaki Y (2000) Catal Commun 1:1–3

    CAS  Google Scholar 

  55. Tominaga K, Sasaki Y (2000) J Mol Catal A Gen 220:159–165

    Google Scholar 

  56. Srivastava VK, Eilbracht P (2009) Catal Commun 10:1791–1795

    CAS  Google Scholar 

  57. Clarke ML (2001) Polyhedron 20:151–164

    CAS  Google Scholar 

  58. Van der Vlugt JI, Van Duren R, Batema GD, Den Heeten R, Meetsma A, Fraanje J, Goubitz K, Kramer PCJ, van Leeuwen PWNM, Vogt D (2005) Organometallics 24:5377–5382

    Google Scholar 

  59. Van Duren R, Van der Vlugt JI, Kooijman H, Spek AL, Vogt D (2007) Dalton Trans 1053–1059

    Google Scholar 

  60. Petöcz G, Berente Z, Kégl T, Kollàr L (2004) J Organomet Chem 689:1188–1193

    Google Scholar 

  61. Hsu CY, Orchin M (1975) J Am Chem Soc 97:3553–3554

    CAS  Google Scholar 

  62. Schwager I, Knifton JF (1976) J Catal 45:256–263

    CAS  Google Scholar 

  63. Anderson GK, Clark HC, Davies JA (1982) Organometallics 1:64–70

    CAS  Google Scholar 

  64. Farkas E, Kollàr L, Moret M, Sironi A (1996) Organometallics 15:1345–1350

    CAS  Google Scholar 

  65. Clark HC, Manzer LE (1973) J Organomet Chem 59:411–428

    CAS  Google Scholar 

  66. Rocha WR (2004) Theochem 677:133–143

    CAS  Google Scholar 

  67. Gómez M, Muller G, Sainz D, Sales J, Solans X (1991) Organometallics 10:4036

    Google Scholar 

  68. Gusevskaja EV, Dos Santos EN, Augusti R, Dias AO, Foca CM (2000) J Mol Catal A 152:15–24

    Google Scholar 

  69. Foca CM, Dos Santos EN, Gusevskaja EV (2002) J Mol Catal A Gen 185:17–23

    CAS  Google Scholar 

  70. Gladiali S, Fabbri D, Kollàr L (1995) J Organomet Chem 491:91–96

    CAS  Google Scholar 

  71. Chalk AJ (1988) In: Rylander PN, Greenfield H, Augustine RL (eds) Catalysis of organic reactions, vol 22. Marcel Dekker, New York, p 43

    Google Scholar 

  72. Foca CM, Barros HJV, Dos Santos EN, Gusevskaya EV, Bayon JC (2003) N J Chem 27:533–539

    CAS  Google Scholar 

  73. Van der Veen LA, Keeven PK, Kamer PCJ, van Leeuwen PWNM (2000) Chem Commun 333–334

    Google Scholar 

  74. Van der Veen LA, Keeven PK, Kamer PCJ, van Leeuwen PWNM (2000) Dalton Trans 2105–2112

    Google Scholar 

  75. Wesemann L, Hagen S, Marx T, Patenburg I, Nobis M, Drießen-Hölscher B (2002) Eur J Inorg Chem 2261–2265

    Google Scholar 

  76. Gottardo M, Scarso A, Paganelli S, Strukul G (2010) Adv Synth Catal 352:2251–2262

    CAS  Google Scholar 

  77. Fernández D, García-Seijo MI, Kégl T, Petôcz G, Kollár L, García Fernández ME (2002) Inorg Chem 41:4435–4443

    Google Scholar 

  78. Van Duren R, Cornelissen LLJM, Van der Vlugt JI, Huijbers JP, Mills AM, Spek AL, Müller C, Vogt D (2006) Helv Chim Acta 89:1547–1558

    Google Scholar 

  79. Zhang Y, Shinoda M, Shiki Y, Tsubaki N (2006) Fuels 85:1194–1200

    CAS  Google Scholar 

  80. Ishii Y, Hidai M (2001) Catal Today 66:53–61

    CAS  Google Scholar 

  81. Drent E, Mul WP, Budzelaar PHM (2002) Comments Inorg Chem 23:127–147

    CAS  Google Scholar 

  82. Konya D, Leñero KQA, Drent E (2006) Organometallics 25:3166–3174

    CAS  Google Scholar 

  83. Jennerjahn R, Piras I, Jackstell R, Franke R, Wiese K-D, Beller M (2009) Chem Eur J 15:6383–6388

    CAS  Google Scholar 

  84. Qiu X, Tsubaki N, Sun S, Fujimoto K (2001) Catal Commun 2:75–80

    CAS  Google Scholar 

  85. Sakauchi J, Sakagami H, Takahashi N, Matsuda T, Imizu Y (2005) Catal Lett 99:257–261

    CAS  Google Scholar 

  86. Moreno MA, Haukka M, Pakkanen TA (2003) J Catal 215:326–331

    CAS  Google Scholar 

  87. Fox DJ, Duckett SB, Flaschenriem C, Brennessel WW, Schneider J, Gunay A, Eisenberg R (2006) Inorg Chem 45:7197–7209

    CAS  Google Scholar 

  88. Mieczyńska E, Trzeciak AM, Ziólkowski JJ, Kownacki I, Marciniec B (2005) J Mol Catal A Chem 237:246–253

    Google Scholar 

  89. Piras I, Jennerjahn R, Jackstell R, Spannenberg A, Franke R, Beller M (2011) Angew Chem Int Ed 50:280–284

    CAS  Google Scholar 

  90. Chuang SCC, Pien S-I (1990) Catal Lett 6:389–394

    CAS  Google Scholar 

  91. Jessop PG, Ikariya T, Noyori R (1995) Organometallics 14:1510–1513

    CAS  Google Scholar 

  92. Suárez T, Fontal B, Parra MF, Reyes M, Bellandi F, Díaz JC, Cancines P, Fonseca Y (2010) Transition Met Chem 35:293–295

    Google Scholar 

  93. Braunstein P, Rose J (1999) In: Braunstein P, Oro LA, Raithby PR (eds) Metal clusters in chemistry, 2nd edn. Wiley-VHC, Weinheim, p 616

    Google Scholar 

  94. Roberts DA, Geoffroy GL (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry, 6th edn. Pergamon, Oxford, p 763

    Google Scholar 

  95. Jenner G (1988) J Organomet Chem 346:237–251

    CAS  Google Scholar 

  96. Adams DA, Cotton FA (1998) Catalysis by di- and polynuclear metal cluster complexes. Wiley, New York

    Google Scholar 

  97. Li C, Widjaja E, Garland M (2003) J Am Chem Soc 125:5540–5548

    CAS  Google Scholar 

  98. Li C, Widjaja E, Garland M (2004) Organometallics 23:4131–4138

    CAS  Google Scholar 

  99. Li C, Chen L, Garland M (2007) J Am Chem Soc 129:13327–13334

    CAS  Google Scholar 

  100. Li C, Chen L, Garland M (2008) Adv Synth Catal 350:679–690

    CAS  Google Scholar 

  101. Haupt HJ, Wittbecker R, Florke U (2001) Z Anorg Allg Chem 627:472–484

    CAS  Google Scholar 

  102. Forniés-Cámer J, Masdeu-Bultó AM, Claver C (2002) Organometallics 21:2609–2618

    Google Scholar 

  103. Hernandez-Gruel MAF, Pérez-Torrente JJ, Ciriano MA, Rivas AB, Lahoz FJ, Dobrinovitch IT, Oro LA (2003) Organometallics 22:1237–1249

    CAS  Google Scholar 

  104. Izumi Y, Konishi K, Tsukahara M, Obaid DM, Aika K-I (2007) J Phys Chem C 111:10073–10081

    CAS  Google Scholar 

  105. Trzeciak AM, Mieczyńska E, Ziólkowski JJ (2000) Top Catal 11(12):461–468

    Google Scholar 

  106. Zhang H, Qiu J, Liang C, Li Z, Wang X, Wang Y, Feng Z, Li C (2005) Catal Lett 101:211–214

    CAS  Google Scholar 

  107. Kim JY, Park JH, Jung O-S, Chung YK, Park KH (2009) Catal Lett 128:483–486

    CAS  Google Scholar 

  108. Huang L, Xu Y (2001) Appl Catal A Gen 205:183–193

    CAS  Google Scholar 

  109. Li X, Zhang Y, Meng F, San X, Yang G, Meng M, Takahashi M, Tsubaki N (2010) Top Catal 53:608–614

    CAS  Google Scholar 

  110. Liu X, Hu B, Fujimoto K, Haruta M, Tokunaga M (2009) Appl Catal B Environ 92:411–421

    CAS  Google Scholar 

  111. Franke R, Selent D, Börner A (2012) Chem Rev 112:5675–5732

    CAS  Google Scholar 

  112. Klosin J, Landis CR (2007) Acc Chem Res 40:1251–1259

    CAS  Google Scholar 

  113. Casey CP, Whiteker GT (1990) Isr J Chem 30:299–304

    CAS  Google Scholar 

  114. Carbó JJ, Maseras F, Bo C, van Leeuwen PWNM (2001) J Am Chem Soc 123:7630–7637

    Google Scholar 

  115. van Leeuwen PWNM, Kamer PCJ, Reek JNK (1999) Pure Appl Chem 71:1443–1452

    Google Scholar 

  116. Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114:5535–5543

    CAS  Google Scholar 

  117. Kranenburg M, van der Burgt YEM, Kamer PCJ, van Leeuwen PWNM, Goubitz K, Fraanje J (1995) Organometallics 14:3081–3089

    CAS  Google Scholar 

  118. Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Petrovich LM, Matter BA, Powell DR (1997) J Am Chem Soc 119:11817–11825

    CAS  Google Scholar 

  119. Billig E, Abatjoglou AG, Bryant DR (1987) US Patent 4,668,651; Eur Patent Appl 213639 (to Union Carbide)

    Google Scholar 

  120. Billig E, Abatjoglou AG, Bryant DR (1988) US Patents 4,748,261 and 4,769,498 (to Union Carbide)

    Google Scholar 

  121. Cuny GD, Buchwald SL (1993) J Am Chem Soc 115:2066–2068

    CAS  Google Scholar 

  122. Spangenberg T, Airiau E, Bui The Thuong M, Donnard M, Billet M, Mann A (2008) Synlett 18:2859–2863

    Google Scholar 

  123. Airiau E, Girard N, Pizzeti M, Salvadori J, Taddei M, Mann A (2010) J Org Chem 75:8670–8673

    CAS  Google Scholar 

  124. Arena G, Zill N, Salvadori J, Girard N, Mann A, Taddei M (2011) Org Lett 13:2294–2297

    CAS  Google Scholar 

  125. Spangenberg T, Breit B, Mann A (2009) Org Lett 11:261–264

    CAS  Google Scholar 

  126. Airiau E, Spangenberg T, Girard N, Breit B, Mann A (2010) Org Lett 12:528–531

    CAS  Google Scholar 

  127. Köhling P, Schmidt AM, Eilbracht P (2003) Org Lett 5:3213–3216

    Google Scholar 

  128. Schmidt AM, Eilbracht P (2005) J Org Chem 70:5528–5535

    CAS  Google Scholar 

  129. Bondzić BP, Eilbracht P (2008) Org Lett 10:3433–3436

    Google Scholar 

  130. Bates RW, Sivarajan K, Straub BF (2011) J Org Chem 76:6844–6848

    CAS  Google Scholar 

  131. Dübon P, Farwick A, Helmchen G (2009) Synlett 9:1413–1416

    Google Scholar 

  132. Farwick A, Helmchen G (2010) Adv Synth Catal 352:1023–1032

    CAS  Google Scholar 

  133. Lambers M, Beijer FH, Padron JM, Toth I, de Vries JG (2002) J Org Chem 67:5022–5024

    CAS  Google Scholar 

  134. Keiichi S, Kawaragi Y, Takai M, Ookoshi T (Mitsubishi Kasei Corp.) (1992) European Patent 0 518 241 (16 Dec 1992)

    Google Scholar 

  135. Cai C, Yu S, Cao B, Zhang X (2012) Chem Eur J 18:9992–9998

    CAS  Google Scholar 

  136. Cobley C, Meek G, Rand C (2011) Tetrahedron Lett 52:3271–3274

    CAS  Google Scholar 

  137. Wang X, Buchwald SL (2011) J Am Chem Soc 133:19080–19083

    CAS  Google Scholar 

  138. Šmejkal T, Breit B (2008) Angew Chem Int Ed 47:311–315

    Google Scholar 

  139. Diab L, Šmejkal T, Geier J, Breit B (2009) Angew Chem Int Ed 48:8022–8026

    Google Scholar 

  140. Babin JE, Whiteker GT (1992) WO 93/03830

    Google Scholar 

  141. Whiteker GT, Briggs JR, Babin JE, Barner BA (2003) In: Morrell DG (ed) Catalysis of organic reactions, vol 89. Marcel Dekker, Inc., New York, pp 359–367

    Google Scholar 

  142. Rajurkar KB, Tonde SS, Didgikar MR, Joshi SS, Chaudhari R (2007) Ind Eng Chem Res 46:8480–8489

    CAS  Google Scholar 

  143. Mazuela J, Coll M, Pàmies O, Diéguez M (2009) J Org Chem 74:5440–5445

    CAS  Google Scholar 

  144. Gual A, Godard C, Castillón S, Claver C (2010) Adv Synth Catal 352:463–477

    CAS  Google Scholar 

  145. Sémeril D, Matt D, Toupet L (2008) Chem Eur J 14:7144–7155

    Google Scholar 

  146. Saidi O, Ruan J, Vinci D, Wu X, Xiao J (2008) Tetrahedron Lett 49:3516–3519

    CAS  Google Scholar 

  147. Jongsma T, Challa G, van Leeuwen PWNM (1991) J Organomet Chem 421:121–128

    CAS  Google Scholar 

  148. van Rooy A, Orij EN, Kamer PCJ, van Leeuwen PWNM (1995) Organometallics 14:34–43

    Google Scholar 

  149. Sakai N, Mano S, Nozaki K, Takaya H (1993) J Am Chem Soc 115:7033–7034

    CAS  Google Scholar 

  150. Nakano K, Tanaka R, Nozaki K (2006) Helv Chim Acta 89:1681–1686

    CAS  Google Scholar 

  151. Tanaka R, Nakano K, Nozaki K (2007) J Org Chem 72:8671–8676

    CAS  Google Scholar 

  152. Noonan GM, Fuentes JA, Cobley CJ, Clarke ML (2012) Angew Chem Int Ed 51:2477–2480

    CAS  Google Scholar 

  153. Cobley CJ, Froese RDJ, Klosin J, Qin C, Whiteker GT, Abboud KA (2007) Organometallics 26:2986–2999

    CAS  Google Scholar 

  154. Axtell AT, Klosin J, Whiteker GT, Cobley C, Fox ME, Jackson M, Abboud KA (2009) Organometallics 28:2993–2999

    CAS  Google Scholar 

  155. Huang J, Bunel E, Allgeier A, Tedrow J, Storz T, Preston J, Correll T, Manley D, Soukup T, Jensen R (2005) Tetrahedron Lett 46:7831–7834

    CAS  Google Scholar 

  156. Clark TP, Landis CR, Freed SL, Klosin J, Abboud KA (2005) J Am Chem Soc 127:5040–5042

    CAS  Google Scholar 

  157. Watkins AL, Hashiguchi BG, Landis CR (2008) Org Lett 10:4553–4556

    CAS  Google Scholar 

  158. McDonald RI, Wong GW, Neupane RP, Stahl SS, Landis CR (2010) J Am Chem Soc 132:14027–14029

    CAS  Google Scholar 

  159. Watkins AL, Landis CR (2011) Org Lett 13:164–167

    CAS  Google Scholar 

  160. Fürstner A, Nevado C, Waser M, Tremblay M, Chevrier C, Teply F, Aïssa C, Moulin E, Müller O (2007) J Am Chem Soc 129:9150–9161

    Google Scholar 

  161. Risi RM, Burke SD (2012) Org Lett 14:1180–1182

    CAS  Google Scholar 

  162. Clemens AJL, Burke SD (2012) J Org Chem 77:2983–2985

    CAS  Google Scholar 

  163. Clarke ML, Roff GJ (2006) Chem Eur J 12:7978–7986

    CAS  Google Scholar 

  164. Keulemans AIM, Kwantes A, van Bavel T (1948) Recl Trav Chim Pays-Bas 67:298–308

    Google Scholar 

  165. Yan Y, Zhang X (2006) J Am Chem Soc 128:7198–7202

    CAS  Google Scholar 

  166. Zhang X, Cao B, Yan Y, Yu S, Ji B, Zhang X (2010) Chem Eur J 16:871–877

    CAS  Google Scholar 

  167. Chikkali SH, Bellini R, Berthon-Gelloz G, van der Vlugt JI, de Bruin B, Reek JNH (2010) Chem Commun 46:1244–1246

    CAS  Google Scholar 

  168. Chikkali SH, Bellini R, de Bruin B, van der Vlugt JI, Reek JNH (2012) J Am Chem Soc 134:6607–6616

    CAS  Google Scholar 

  169. Burke SD, Cobb JE (1986) Tetrahedron Lett 27:4237–4240

    CAS  Google Scholar 

  170. Yeung CS, Dong VM (2011) Angew Chem Int Ed 50:809–812

    CAS  Google Scholar 

  171. Lightburn TE, Dombrowski MT, Tan KL (2008) J Am Chem Soc 130:9210–9211

    CAS  Google Scholar 

  172. Worthy AD, Gagnon MM, Dombrowski MT, Tan KL (2009) Org Lett 11:2764–2767

    CAS  Google Scholar 

  173. Worthy AD, Joe CL, Lightburn TE, Tan KL (2010) J Am Chem Soc 132:14757–14759

    CAS  Google Scholar 

  174. Joe CL, Tan KL (2011) J Org Chem 76:7590–7596

    CAS  Google Scholar 

  175. Sun X, Frimpong K, Tan KL (2010) J Am Chem Soc 132:11841–11843

    CAS  Google Scholar 

  176. Lightburn TE, De Paolis OA, Cheng KH, Tan KL (2011) Org Lett 13:2686–2689

    CAS  Google Scholar 

  177. Grünanger CU, Breit B (2008) Angew Chem Int Ed 47:7346–7349

    Google Scholar 

  178. Grünanger CU, Breit B (2010) Angew Chem Int Ed 49:967–970

    Google Scholar 

  179. Usui I, Nomura K, Breit B (2011) Org Lett 13:612–615

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Peruzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gonsalvi, L., Guerriero, A., Monflier, E., Hapiot, F., Peruzzini, M. (2013). The Role of Metals and Ligands in Organic Hydroformylation. In: Taddei, M., Mann, A. (eds) Hydroformylation for Organic Synthesis. Topics in Current Chemistry, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_430

Download citation

Publish with us

Policies and ethics