Skip to main content

Transition Metal-Catalyzed C–C Bond Activation of Four-Membered Cyclic Ketones

  • Chapter
  • First Online:
C-C Bond Activation

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 346))

Abstract

With the advent of new synthetic methodologies, carbon–carbon bond (C–C) activation strategies have uncovered not only new fundamental reactivity but also the potential for use as a highly efficient synthetic protocol. This chapter specifically discusses the use of four-membered ketone-based starting materials for C–C activation initiated transformations using a variety of transition metals. The two major modes of activation, oxidative addition and β-C elimination, are presented as each pathway shows different mechanistic details and the ability to effect several types of reactions. Applications to the synthesis of complex molecules are presented and perspectives on future applications are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Murakami suggested an oxidative addition mechanism in [35].

References

  1. Trost BM (1991) Science 254:1471–1477

    Article  CAS  Google Scholar 

  2. Corey EJ, Cheng X-M (2009) The logic of chemical synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  3. Nicolaou KC, Sorensen EJ (1996) Classics in total synthesis: targets, strategies, methods. Wiley-VCH, Weinheim

    Google Scholar 

  4. Nicolaou KC, Snyder SA (2003) Classics in total synthesis II: more targets, strategies, methods. Wiley-VCH, Weinheim

    Google Scholar 

  5. Nicolaou KC, Chen J (2011) Classics in total synthesis III. Wiley-VCH, Weinheim

    Google Scholar 

  6. Yu J-Q, Shi Z-J (eds) (2010) C–H activation. Springer, Berlin, Heidelberg

    Google Scholar 

  7. Winter C, Krause N (2009) Angew Chem Int Ed 48:2460–2462

    Article  CAS  Google Scholar 

  8. Najera C, Snasano JM (2009) Angew Chem Int Ed 48:2452–2456

    Article  CAS  Google Scholar 

  9. Seiser T, Cramer N (2009) Org Biomol Chem 7:2835–2840

    Article  CAS  Google Scholar 

  10. Rybichinski B, Milstein D (1999) Angew Chem Int Ed 38:870–883

    Article  Google Scholar 

  11. Jun C-H (2004) Chem Soc Rev 33:610–618

    Article  CAS  Google Scholar 

  12. Murakami M, Ito Y (1999) Top Organomet Chem 3:97–129

    CAS  Google Scholar 

  13. Perthuisot C, Edelbach BJ, Zubirs DL, Simhai H, Iverson CN, Muller C, Satoh T, Jones WD (2002) J Mol Catal A 189:157–168

    Article  CAS  Google Scholar 

  14. Ruhland K (2012) Eur J Org Chem 14:2683–2706

    Article  Google Scholar 

  15. Ruben M, Rubina M, Gevorgyan V (2007) Chem Rev 107:3117–3179

    Article  Google Scholar 

  16. Seiser T, Saget T, Tran DN, Cramer N (2011) Angew Chem Int Ed 50:7740–7752

    Article  CAS  Google Scholar 

  17. Tipper CFH (1955) J Chem Soc 2045–2046

    Google Scholar 

  18. Cassar L, Eaton PE, Halper J (1970) J Am Chem Soc 92:6366–6368

    Article  Google Scholar 

  19. Bishop KC (1976) Chem Rev 76:461–486

    Article  CAS  Google Scholar 

  20. Crabtree RH, Dion RP (1984) J Chem Soc Chem Commun 1260–1261

    Google Scholar 

  21. Suggs JW, Jun CH (1984) J Am Chem Soc 106:3054–3056

    Article  CAS  Google Scholar 

  22. Liebeskind LS, Baysdon SL, South MS, Lyer S (1985) Tetrahedron 41:5839–5853

    Article  CAS  Google Scholar 

  23. Periana RA, Bergman RG (1986) J Am Chem Soc 108:1346–7355

    Article  Google Scholar 

  24. Hartwig JF, Andersen RA, Bergman RG (1989) J Am Chem Soc 111:2717–2719

    Article  CAS  Google Scholar 

  25. Gozin M, Wesman A, Ben-David Y, Milstein D (1993) Nature 364:699–701

    Article  CAS  Google Scholar 

  26. Murakami M, Amii H, Ito Y (1994) Nature 370:540–541

    Article  CAS  Google Scholar 

  27. Rusina A, Vlcek A (1965) Nature 206:295–296

    Article  CAS  Google Scholar 

  28. Murakami M, Amii H, Shigeto K, Ito Y (1996) J Am Chem Soc 118:8285–8290

    Article  CAS  Google Scholar 

  29. Murakami M, Takahashi K, Amii H, Ito Y (1997) J Am Chem Soc 119:9307–9308

    Article  CAS  Google Scholar 

  30. Murakami M, Takahashi T, Amii H, Ito Y (1998) J Am Chem Soc 120:9949–9950

    Article  CAS  Google Scholar 

  31. Huffman MA, Liebeskind LS (1993) J Am Chem Soc 115:4895–4896

    Article  CAS  Google Scholar 

  32. Wender PA, Correa AG, Sato Y, Sun R (2000) J Am Chem Soc 122:7815–7816

    Article  CAS  Google Scholar 

  33. Murakami A, Itahashi T, Ito Y (2002) J Am Chem Soc 124:13976–13977

    Article  CAS  Google Scholar 

  34. Matsuda T, Fujimoto A, Ishibashi M, Murakami M (2004) Chem Lett 33:876–877

    Article  CAS  Google Scholar 

  35. Masuda Y, Hasegawa M, Yamashita M, Nozaki K, Ishida N, Murakami M (2013) J Am Chem Soc 135:7142–7145

    Article  CAS  Google Scholar 

  36. Murakami M, Tsuruta T, Ito Y (2000) Angew Chem Int Ed 39:2484–2486

    Article  CAS  Google Scholar 

  37. Matsuda T, Shigeno M, Murakami M (2007) J Am Chem Soc 129:12086–12087

    Article  CAS  Google Scholar 

  38. Matsuda T, Makino M, Murakami M (2004) Org Lett 6:1257–1259

    Article  CAS  Google Scholar 

  39. Matsuda T, Shigeno M, Makino M, Murakami M (2006) Org Lett 8:3379–3381

    Article  CAS  Google Scholar 

  40. Matsuda T, Makino M, Murakami M (2004) Angew Chem Int Ed 44:4608–4611

    Article  Google Scholar 

  41. Matsuda T, Shigeno M, Murakami M (2008) Org Lett 10:5219–5221

    Article  CAS  Google Scholar 

  42. Ishida N, Ikemoto W, Murakami M (2012) Org Lett 14:3230–3232

    Article  CAS  Google Scholar 

  43. Montgomery J (2013) Organonickel chemistry. In: Organometallics in synthesis: fourth manual. Wiley, Hoboken, pp 319–428

    Google Scholar 

  44. Oblinger E, Montgomery J (1997) J Am Chem Soc 119:9065–9066

    Article  CAS  Google Scholar 

  45. Murakami M, Ashida S, Matsuda T (2005) J Am Chem Soc 127:6932–6933

    Article  CAS  Google Scholar 

  46. Murakami M, Ashida S, Matsuda T (2006) J Am Chem Soc 128:2166–2167

    Article  CAS  Google Scholar 

  47. Ashida S, Murakami M (2008) Bull Chem Soc Jpn 81:885–893

    Article  CAS  Google Scholar 

  48. Li Y, Lin Z (2013) Organometallics 32:3003–3011

    Article  CAS  Google Scholar 

  49. Kumar P, Zhang K, Louie J (2012) Angew Chem Int Ed 51:8602–8606

    Article  CAS  Google Scholar 

  50. Ho KYT, Aissa C (2012) Chem Eur J 18:3486–3489

    Article  CAS  Google Scholar 

  51. Kumar P, Louie J (2012) Org Lett 14:2026–2029

    Article  CAS  Google Scholar 

  52. Ishida N, Yuhki T, Murakami M (2012) Org Lett 14:3898–3901

    Article  CAS  Google Scholar 

  53. Murakami M, Ashida S (2006) Chem Commun 4599–4601

    Google Scholar 

  54. Liu L, Ishida N, Murakami M (2012) Angew Chem Int Ed 51:2485–2488

    Article  CAS  Google Scholar 

  55. Parker E, Cramer N (2014) Organometallics 33:780–787

    Article  CAS  Google Scholar 

  56. Souillart L, Parker E, Cramer N (2014) Angew Chem Int Ed 53:3001–3005

    Google Scholar 

  57. Thankur A, Facer ME, Louie J (2013) Angew Chem Int Ed 52:12161–12165

    Article  Google Scholar 

  58. Danheiser RL, Gee SK (1984) J Org Chem 49:1672–1674

    Article  CAS  Google Scholar 

  59. Huffman MA, Liebeskind LS (1990) Organometallics 9:2194–2196

    Article  CAS  Google Scholar 

  60. Huffman MA, Liebeskind LS (1992) Organometallics 11:255–266

    Article  CAS  Google Scholar 

  61. Huffman MA, Liebeskind LS (1990) J Am Chem Soc 112:8617–8618

    Article  CAS  Google Scholar 

  62. Huffman MA, Liebeskind LS (1991) J Am Chem Soc 113:2771–2772

    Article  CAS  Google Scholar 

  63. Kondo T, Tagushi Y, Kaneko Y, Niimi M, Mitsudo T (2004) Angew Chem Int Ed 43:5369–5372

    Article  CAS  Google Scholar 

  64. Kondo T, Miimi M, Nomura M, Wada K, Mitsudo T (2007) Tetrahedron Lett 48:2837–2839

    Article  CAS  Google Scholar 

  65. Xu T, Dong G (2012) Angew Chem Int Ed 51:7567–7571

    Article  CAS  Google Scholar 

  66. Xu T, Ko HM, Savage NA, Dong G (2012) J Am Chem Soc 134:20005–20008

    Article  CAS  Google Scholar 

  67. Chen P, Xu T, Dong G (2013) Angew Chem Int Ed 53:1674–1678

    Google Scholar 

  68. Xu T, Savage NA, Dong G (2013) Angew Chem Int Ed 53:1891–1895

    Google Scholar 

  69. Evans JA, Everitt GF, Kemmitt RDW, Russell DR (1973) J Chem Soc Chem Commun 158–159

    Google Scholar 

  70. Hamner ER, Kemmitt RDW, Smith MA (1974) J Chem Soc Chem Commun 841–842

    Google Scholar 

  71. Liebeskind LS, Baysdon SL, South MS, Blount JF (1980) J Organomet Chem 202:C73–C76

    Article  CAS  Google Scholar 

  72. Liebeskind LS, Baysdon SL, South MS (1980) J Am Chem Soc 102:7398–7400

    Article  Google Scholar 

  73. Baysdon SL, Liebeskind LS (1982) Organometallics 1:771–775

    Article  CAS  Google Scholar 

  74. Liebeskind LS, Leeds JP, Baysdon SL, Iyer S (1984) J Am Chem Soc 106:6451–6453

    Article  CAS  Google Scholar 

  75. Jewell CF Jr, Liebeskind LS, Williamson M (1985) J Am Chem Soc 107:6715–6716

    Article  CAS  Google Scholar 

  76. Iyer S, Liebeskind LS (1987) J Am Chem Soc 109:2759–2770

    Article  CAS  Google Scholar 

  77. South MS, Liebeskind LS (1984) J Am Chem Soc 106:4181–4185

    Article  CAS  Google Scholar 

  78. Liebeskind LS, Baysdon SL, Goedken V, Chidambaram R (1986) Organometallics 5:1086–1092

    Article  CAS  Google Scholar 

  79. Cho SH, Wirtz KR, Liebeskind LS (1990) Organometallics 9:3067–3072

    Article  CAS  Google Scholar 

  80. Liebeskind LS, Chidambaram R (1987) J Am Chem Soc 109:5025–5026

    Article  CAS  Google Scholar 

  81. Hoberg H, Herrera A (1981) Angew Chem Int Ed 20:876–877

    Article  Google Scholar 

  82. Kondo T, Nakamura A, Okada T, Suzuki N, Wada K, Mitsudo T (2000) J Am Chem Soc 122:6319–6320

    Article  CAS  Google Scholar 

  83. Mitsudo T, Kondo T (2001) Synlett 309–321

    Google Scholar 

  84. Yamamoto Y, Kuwabara S, Hayashi H, Nishiyama H (2006) Adv Synth Catal 348:2493–2500

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank UT Austin and CPRIT for a startup fund, NIGMS (R01GM109054-01) and the Welch Foundation (F 1781) for research grants. We thank Prof. Yoshiaki Nakao for proofreading this review chapter and thoughtful suggestions, and we also thank Dr. Jotham W. Coe for his generous efforts in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, T., Dermenci, A., Dong, G. (2014). Transition Metal-Catalyzed C–C Bond Activation of Four-Membered Cyclic Ketones. In: Dong, G. (eds) C-C Bond Activation. Topics in Current Chemistry, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2014_545

Download citation

Publish with us

Policies and ethics