Skip to main content

Molecular Processing of Polymers with Cyclodextrins

  • Chapter
  • First Online:
Inclusion Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 222))

Abstract

We summarize our recent studies employing the cyclic starch derivatives called cyclodextrins (CDs) to both nanostructure and functionalize polymers. Two important structural characteristics of CDs are taken advantage of to achieve these goals. First the ability of CDs to form noncovalent inclusion complexes (ICs) with a variety of guest molecules, including many polymers, by threading and inclusion into their relatively hydrophobic interior cavities, which are roughly cylindrical with diameters of ∼ 0.5 − 1.0 nm. α-, β-, and γ-CD contain six, seven, and eight α-1,4-linked glucose units, respectively. Warm water washing of polymer-CD–ICs containing polymer guests insoluble in water or treatment with amylase enzymes serves to remove the host CDs and results in the coalescence of the guest polymers into solid samples. When guest polymers are coalesced from the CD–ICs by removing their host CDs, they are observed to solidify with structures, morphologies, and even conformations that are distinct from bulk samples made from their solutions and melts. Molecularly mixed, intimate blends of two or more polymers that are normally immiscible can be obtained from their common CD–ICs, and the phase segregation of incompatible blocks can be controlled (suppressed or increased) in CD–IC coalesced block copolymers. In addition, additives may be more effectively delivered to polymers in the form of their crystalline CD–ICs or soluble CD–rotaxanes. Secondly, the many hydroxyl groups attached to the exterior rims of CDs, in addition to conferring water solubility, provide an opportunity to covalently bond them to polymers either during their syntheses or via postpolymerization reactions. Polymers containing CDs in their backbones or attached to their side chains are observed to more readily accept and retain additives, such as dyes and fragrances. Processing with CDs can serve to both nanostructure and functionalize polymers, leading to greater understanding of their behaviors and to new properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harada A, Kamachi M (1990) Macromolecules 23:2821

    CAS  Google Scholar 

  2. Huang L, Vasanthan N, Tonelli AE (1997) J Appl Polym Sci 64:281

    CAS  Google Scholar 

  3. Tonelli AE (1997) Polym Int 43:295

    CAS  Google Scholar 

  4. Huang L, Allen EJ, Tonelli AE (1997) In: Pandalai SG (ed) Recent research developments in macromolecular research, Vol. 2. Research Signpost, Trivandrum, India, p 175

    Google Scholar 

  5. Huang L, Allen E, Tonelli AE (1998) Polymer 39:4857

    CAS  Google Scholar 

  6. Huang L, Tonelli AE (1998) J Macromol Sci Revs Macromol Chem Phys C38 (4):781

    CAS  Google Scholar 

  7. Huang L, Tonelli AE (1999) In: Dinh SM, DeNuzzio JD, Comfort AR (eds) Intelligent materials for controlled release technologies, Chap.10. ACS Symposium Series No. 728. ACS, Washington, DC

    Google Scholar 

  8. Huang L, Allen E, Tonelli AE (1999) Polymer 40:3211

    CAS  Google Scholar 

  9. Huang L, Taylor H, Gerber M, Orndorff P, Horton J, Tonelli AE (1999) J Appl Polym Sci 74:937

    CAS  Google Scholar 

  10. Lu J, Shin ID, Nojima S, Tonelli AE (2000) Polymer 41:5871

    CAS  Google Scholar 

  11. Rusa CC, Tonelli AE (2000) Macromolecules 33:1813

    CAS  Google Scholar 

  12. Rusa CC, Tonelli AE (2000) Macromolecules 33:5321

    CAS  Google Scholar 

  13. Huang L, Gerber M, Lu J, Tonelli AE (2001) Polym Degrad Stabil 71:279

    CAS  Google Scholar 

  14. Porbeni FE, Edeki EM, Shin ID, Tonelli AE (2001) Polymer 42 (16):6907

    CAS  Google Scholar 

  15. Rusa CC, Luca C, Tonelli AE (2001) Macromolecules 34:1318

    CAS  Google Scholar 

  16. Wei M, Tonelli AE (2001) Macromolecules 34:4061

    CAS  Google Scholar 

  17. Lu J, Hill M, Hood M, Greeson DF Jr, Horton IR, Orndorff PE, Herndon SA, Tonelli AE (2001) J Appl Polym Sci 82:300

    CAS  Google Scholar 

  18. Shuai X, Porbeni FE, Wei M, Shin ID, Tonelli AE (2001) Macromolecules 34:7355

    CAS  Google Scholar 

  19. Huang L, Gerber M, Taylor H, Lu J, Tapazsi E, Wutkowski M, Hill M, Harvey A, Rusa CC, Wei M, Porbeni FE, Lewis CS, Tonelli AE (2001) Macromol Chem Macromol Sympos 176:129

    CAS  Google Scholar 

  20. Shuai X, Wei M, Porbeni FE, Bullions TA, Tonelli AE (2002) Biomacromolecules 3:201

    CAS  Google Scholar 

  21. Bullions TA, Wei M, Porbeni FE, Gerber MJ, Peet J, Balik M, Tonelli AE (2002) J Polym Sci Polym Phys Ed 40:992

    CAS  Google Scholar 

  22. Shuai X, Porbeni FE, Wei M, Bullions TA, Tonelli AE (2002) Macromolecules 35:3126

    CAS  Google Scholar 

  23. Wei M, Davis W, Urban B, Song Y, Porbeni FE, Wang X, White JL, Balik CM, Rusa CC, Fox J, Tonelli AE (2002) Macromolecules 35:8039

    CAS  Google Scholar 

  24. Rusa CC, Bullions TA, Fox J, Porbeni FE, Wang X, Tonelli AE (2002) Langmuir 18:10016

    CAS  Google Scholar 

  25. Shuai X, Porbeni FE, Wei M, Bullions TA, Tonelli AE (2002) Macromolecules 35:2401

    CAS  Google Scholar 

  26. Shuai X, Porbeni FE, Wei M, Bullions TA, Tonelli AE (2002) Macromolecules 35:3778

    CAS  Google Scholar 

  27. Wei M, Shuai X, Tonelli AE (2003) Biomacromolecules 4:783

    CAS  Google Scholar 

  28. Bullions TA, Edeki EM, Porbeni FE, Wei M, Shuai X, Tonelli AE (2003) J Polym Sci Polym Phys Ed 41:139

    CAS  Google Scholar 

  29. Rusa CC, Fox J, Tonelli AE (2003) Macromolecules 36:2742

    CAS  Google Scholar 

  30. Abdala AA, Khan S, Tonelli AE (2003) Macromolecules 36:7833

    CAS  Google Scholar 

  31. Tonelli AE (2003) J Tex. Appar Tech Manage 3 (2):1

    Google Scholar 

  32. Tonelli AE (2003) Macromol Sympos 203:71

    CAS  Google Scholar 

  33. Wei M, Bullions TA, Rusa CC, Wang X, Tonelli AE (2003) J Polym Sci B Polym Phys Ed 42:386

    Google Scholar 

  34. Hunt MA, Uyar T, Shamsheer R, Tonelli AE (2004) Polymer 45:1345

    CAS  Google Scholar 

  35. Rusa CC, Uyar T, Rusa M, Hunt MA, Wang X, Tonelli AE (2004) J Polym Sci B Polym Phys Ed 42:4182

    CAS  Google Scholar 

  36. Abdala AA, Wu W, Olesen K, Jenkins RD, Tonelli AE, Khan S (2004) J Rheol 48:979

    CAS  Google Scholar 

  37. Wei M, Shin ID, Urban B, Tonelli AE (2004) J Polym Sci B Polym Phys Ed 42:1369

    CAS  Google Scholar 

  38. Rusa CC, Shuai X, Bullions TA, Wei M, Porbeni FE, J. Lu, L. Huang, J. Fox, Tonelli AE (2004) J Polym Environ 12 (3):157

    CAS  Google Scholar 

  39. Rusa CC, Wei M, Bullions TA, Rusa M, Gomez MA, Porbeni FE, Wang X, Shin ID, Balik CM, White JL, Tonelli AE (2004) Cryst Growth Design 4:1431

    CAS  Google Scholar 

  40. Rusa CC, Wei M, Shuai X, Bullions TA, Wang X, Rusa M, Uyar T, Tonelli AE (2004) J Polym Sci B Polym Phys Ed 42:4207

    CAS  Google Scholar 

  41. Rusa M, Wang X, Tonelli AE (2004) Macromolecules 37:6898

    CAS  Google Scholar 

  42. Rusa CC, Rusa M, Gomez MA, Shin ID, Fox JD, Tonelli AE (2004) Macromolecules 37:7992

    CAS  Google Scholar 

  43. Hernandez R, Rusa M, Rusa CC, Lopez D, Mijanos C, Tonelli AE (2004) Macromolecules 37:9620

    CAS  Google Scholar 

  44. Rusa CC, Wei M, Bullions TA, Shuai X, Uyar T, Tonelli AE (2005) Polym Adv Technol 16:269

    CAS  Google Scholar 

  45. Peet J, Rusa CC, Hunt MA, Tonelli AE, Balik CM (2005) Macromolecules 38:537

    CAS  Google Scholar 

  46. Jia X, Wang X, Tonelli AE, White JL (2005) Macromolecules 38:2775

    CAS  Google Scholar 

  47. Uyar T, Rusa CC, Wang X, Rusa M, Hacaloglu J, Tonelli AE (2005) J Polym Sci B Polym Phys Ed 43:2578

    CAS  Google Scholar 

  48. Rusa CC, Bridges C, Ha S-W, Tonelli AE (2005) Macromolecules 38:5640

    CAS  Google Scholar 

  49. Uyar T, Rusa CC, Hunt MA, Aslan E, Hacaloglu J, Tonelli AE (2005) Polymer 46:4762

    CAS  Google Scholar 

  50. Porbeni FE, Shin ID, Shuai X, Wang X, White JL, Jia X, Tonelli AE (2005) J Polym Sci B Polym Phys 43:2086

    CAS  Google Scholar 

  51. Uyar T, Aslan E, Tonelli AE, Hacaloglu J (2006) Polym Degrad Stabil 91 (1):1

    CAS  Google Scholar 

  52. Uyar T, El-Shafei A, Hacaloglu J, Tonelli AE (2006) J Inclus Phenom Macrocyc Chem 55:109

    CAS  Google Scholar 

  53. Uyar T, Hunt MA, Gracz HS, Tonelli AE (2006) Cryst Growth Design 6:1113

    CAS  Google Scholar 

  54. Uyar T, Oguz G, Tonelli AE, Hacaloglu J (2006) Polym Degrad Stabil 91:2471

    CAS  Google Scholar 

  55. Rusa CC, Rusa M, Peet J, Uyar T, Fox J, Hunt MA, Wang X, Balik CM, Tonelli AE (2006) J Inclus Phenom Macrocyc Chem 55:185

    CAS  Google Scholar 

  56. Uyar T, Gracz HS, Rusa M, Shin ID, El-Shafei A, Tonelli AE (2006) Polymer 47:6948

    CAS  Google Scholar 

  57. Uyar T, Tonelli AE, J. Hacaloglu (2006) Polym Degrad Stabil 91:2960

    CAS  Google Scholar 

  58. Pang K, Schmidt B, Kotek R, Tonelli AE (2006) J Appl Polym Sci 102 (6):6049

    CAS  Google Scholar 

  59. Vedula J, Tonelli AE (2007) J Polym Sci B Polym Phys Ed 45:735 (Here the slow addition of a heated trifluoroacetic acid solution of PET into rapidly stirred acetone resulted in a precipitated PET sample (p-PET) whose physical behaviors closely parallel those of PET coalesced from its γ-CD-IC.)

    CAS  Google Scholar 

  60. Tonelli AE (2007) In: Brown P, Stevens K (eds) Handbook of nanofiber & nanotechnology in textiles. Woodhead, Cambridge, UK

    Google Scholar 

  61. Paik Y, Poliks B, Rusa CC, Tonelli AE, Schaefer J (2007) J Polym Sci Part B Polym Phys Ed 45:1271

    CAS  Google Scholar 

  62. Uyar T, Rusa CC, Tonelli AE, Hacaloglu J (2007) Polym Degrad Stabil 92:32

    CAS  Google Scholar 

  63. Martinez G, Gomez MA, Villar S, Garrido L, Tonelli AE, Balik CM (2007) J Polym Sci A Polym Chem 45:2503

    CAS  Google Scholar 

  64. Park JS, Tonelli AE, Srinivasaro M (2008) Adv Mater 19:xxxx

    Google Scholar 

  65. Whang H-S, Medlin E, Wrench N, Hockney J, Farin CE, Tonelli AE (2007) J Appl Polym Sci 106:4104

    CAS  Google Scholar 

  66. Yang H, El-Shafei A, Schilling FC, Tonelli AE (2007) Macromol Theor Simul 16:797

    CAS  Google Scholar 

  67. Tonelli AE (2008) J Inclus Phenom Macrocyc Chem 60:197

    CAS  Google Scholar 

  68. Whang H-S, Vendeix FAP, Gracz HS, Gadsby J, Tonelli AE (2008) Pharm Res 25:1142

    CAS  Google Scholar 

  69. Whang H-S, Hunt MA, Medlin E, Wrench N, Hockney J, Farin CE, Tonelli AE (2007) J Appl Polym Sci 106:4104

    CAS  Google Scholar 

  70. Whang H-S, Tonelli AE (2008) J Inclus Phenom Macrocyc Chem 62:127

    CAS  Google Scholar 

  71. Steinbrunn MB, Wenz G (1997) DE 19707855.9, PCT/DE 98/0056

    Google Scholar 

  72. Harada A, Okada M, Kawaguchi Y (2007) Chem Lett 34:542

    Google Scholar 

  73. Wenz G, Han BH, Muller A (2006) Chem Revs 106 (3):782

    CAS  Google Scholar 

  74. Harada A, Hashidzume A, Takashima Y (2006) Adv Polym Sci 201:1

    CAS  Google Scholar 

  75. Wenz G (2008) Molecular Recognition of Polymers by Cyclodextrins. Adv Polym Sci

    Google Scholar 

  76. Tonelli AE (1991) Theor Comput Polym Sci 1:22

    CAS  Google Scholar 

  77. Hunt MA, Tonelli AE, Balik CM (2007) J Phys Chem 111:3853

    CAS  Google Scholar 

  78. Tonelli AE (1992) Comp Theor Polym Sci 2:80

    CAS  Google Scholar 

  79. Koenig JL (1992) Spectroscopy of polymers, Chap. 4. American Chemical Society, Washington, DC

    Google Scholar 

  80. Zerbi G (1999) Modern polymer spectroscopy, Chap. 3. Wiley, New York

    Google Scholar 

  81. Miyake A (1959) J Polym Sci 38:479

    CAS  Google Scholar 

  82. D'Esposito L, Koenig JL (1976) J Polym Sci Polym B Polym Phys Ed 14:1731

    Google Scholar 

  83. Psarski M, Piorkowska E, Galeski A (2000) Macromolecules 33:916

    CAS  Google Scholar 

  84. Tonelli AE (2002) Polymer 43:637

    CAS  Google Scholar 

  85. Natta G, Corradini P (1960) Nuovo Cim Suppl 15:40

    CAS  Google Scholar 

  86. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Makromol Chem 75:134

    CAS  Google Scholar 

  87. Gomez MA, Tanaka H, Tonelli AE (1987) Polymer 28:2227

    CAS  Google Scholar 

  88. Tonelli AE (1991) Macromolecules 24:3069

    CAS  Google Scholar 

  89. Eaton P, Vasanthan N, Tonelli AE (1995) Macromolecules 28:2531

    Google Scholar 

  90. Belfiore LA, Schilling FC, Tonelli AE, Lovinger AJ, Bovey FA (1984) Macromolecules 17:2561

    CAS  Google Scholar 

  91. Nakamura K, Aioke K, Usaka K, Kanamoto T (1999) Macromolecules 32:4975

    CAS  Google Scholar 

  92. Wenz G, Steinbrunn MB (1997) (University of Karlsruhe (TH), Germany). De 19608354 Chem Abstr:623641

    Google Scholar 

  93. Steinbrunn MB, Wenz G (1996) Angew Chem Int Ed 35:2139

    CAS  Google Scholar 

  94. Wenz G, Steinbrunn MB, Landfester K (1997) Tetrahedron 53:15575 (for inclusion and coalescence of nylon-11 from α-CD)

    CAS  Google Scholar 

  95. Vashanthan N, Salem D (2001) J Polym Sci Polym B Phys Ed 39:536

    Google Scholar 

  96. Willcox PJ, Howie DW, Schmidt-Rohr K, Hoagland DA, Gido SP (1999) J Polym Sci Pol Phys 37:3438

    CAS  Google Scholar 

  97. Hassan CM, Peppas NA (2000) Adv Polym Sci 153:37

    CAS  Google Scholar 

  98. Hernández R, López D, Mijangos C, Guenet JM (2002) Polymer 43:5661

    Google Scholar 

  99. Hernandez R, Sarafian A, López D, Mijangos C (2004) Polymer 45:5543

    CAS  Google Scholar 

  100. http://www.gl.iit.edu/frame/genbank.htm, Fibroin heavy chain precursor (Fib-H) (H- fibroin), gij9087216jspjP05790j FBOH_BOMMO[9087216], Gene Bank

  101. Li J, Ni X, Zhou Z, Leong KW (2003) J Am Chem Soc 125:1788

    CAS  Google Scholar 

  102. Girardeau TE, Zhao T, Leisen J, Beckham HW (2005) Macromolecules 38:2261

    CAS  Google Scholar 

  103. He Y, Inoue Y (2003) Biomacromolecules 4:1865

    CAS  Google Scholar 

  104. Vogel R, Tandler B, Haussler L, Jehnichen D, Brunig H (2006) Macromol Biosci 6:730

    CAS  Google Scholar 

  105. Dong T, He Y, Zhu B, Shin K, Inoue Y (2005) Macromolecules 38:7736

    CAS  Google Scholar 

  106. Dong T, Shin K, Zhu B, Inoue Y (2006) Macromolecules 39:2427

    CAS  Google Scholar 

  107. Kawaguchi Y, Nishiyama T, Okada M, Kamachi M, Harada A (2000) Macromolecules 33:4427

    Google Scholar 

  108. Lu J, Mirau PA, Tonelli AE (2001) Macromolecules 34:3276

    CAS  Google Scholar 

  109. Park JSK, Srinivasaro M (2008) Macromolecules 19:xxxx

    Google Scholar 

  110. Haque SA, Park JS, Srinivasarao M, Durrant JR (2004) Adv Mater 16 (14):1177

    CAS  Google Scholar 

  111. Craig MR, Claridge TDW, Hutchings MG, Anderson HL (1999) Chem Commun 1537

    Google Scholar 

  112. Sebille B, Thuaud N, Behar N, Piquion J (1987) J Chromatogr 409:61

    CAS  Google Scholar 

  113. Weickenmeier M, Wenz G (1996) Macromol Rapid Commun 17:731

    CAS  Google Scholar 

  114. Busche BJ, Balik CM (2006) Abstr Pap Am Chem Soc 231:2

    Google Scholar 

  115. Busche BJ, Tonelli AE, Balik CM (2007) Abstr Pap Am Chem Soc 232:2

    Google Scholar 

  116. Miura Y, Narumi A, Matsuya S, Satoh T, Duan Q, Kaga H, Kakuchi T (2005) J Polym Sci A Polym Chem 43:4271

    CAS  Google Scholar 

  117. Xiao H, Li J (2005) Tetrahedron Lett 46:2227

    Google Scholar 

  118. Plamper FA, Becker H, Lanzendorfer M, Patel M, Wittemann A, Ballauf M, Muller AHE (2005) Macromol Chem Phys 206:1813

    CAS  Google Scholar 

  119. Odian G (2004) Principles of polymerization, Chap. 3, 4th edn. Wiley, New York

    Google Scholar 

  120. Wenz G, Han BH, Muller A (2006) Chem Rev 106 (3):782

    CAS  Google Scholar 

  121. Volume 57 of J. Inclusion Phenom Macrocyclic Chem 2007, is devoted to papers presented at the XIII International Cyclodextrin Symposium held May, 2006 in Turin, Italy.

    Google Scholar 

  122. Tonelli AE (1989) NMR spectroscopy and polymer microstructure: the conformational connection. VCH, New York

    Google Scholar 

  123. Kaji H, Schmidt-Rohr K (2002) Macromolecules 35:7993

    CAS  Google Scholar 

Download references

Acknowledgement

I am grateful to the many students and collaborators listed in the references that have made possible the research described herein. Funding received from the National Textile Center (U.S. Commerce Dept.), the National Science Foundation, and North Carolina State University is appreciated. I am also grateful to the editor of this Volume, Prof. Gerhard Wenz, for his careful reading of this chapter and for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Tonelli .

Editor information

Editors and Affiliations

References

References

As seen in Fig. 10 in both non-aromatic carbon spectral regions the least shielded, downfield resonance belongs to as-received PET, the most shielded, upfield resonance comes from coalesced or included PETs, and the precipitated PET [ 59 ] seems to contain ∼30 and ∼70% material resonating at the frequencies of these downfield and upfield, as-received, and coalesced or included PET peaks, respectively. We expect [ 122 ] carbonyl carbons terminating ethylene glycol fragments whose -\(CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds have g± conformations to resonate upfield from those with t conformations. This is consistent with conclusions drawn previously from modeling the conformations of included PET chains [ 78, 84 ] and the FTIR analysis [ 21 ] of as-received and coalesced PET conformations.

We would normally expect the methylene carbon resonances of these PET samples to exhibit the same order of resonance frequencies, because they are γ to the carbonyl carbons and are either t or g± to them conformationally across the same -\(CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds. This is, in fact, what we observe in Fig. 10. However, a recent solid-state 13 C-NMR study of PETs by Kaji and Schmidt-Rohr [ 123 ] has convincingly established that the resonance frequencies of methylene carbons in PETs are insensitive to the conformations of the -\(CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds, and instead seem to depend only upon the conformations of the -\(CH_{2}\hbox{--}CH_{2}\)- bond connecting them. On highly crystalline and predominantly amorphous PET samples with 13 C-enriched methylene carbons they were able to separately observe methylene carbon resonances belonging to t and to \(g\pm - CH_{2}\hbox{--}CH_{2}\)- bonds. They found that in both PET samples the methylene carbons belonging to \(t-CH_{2}\hbox{--}CH_{2}\)- bonds resonated ∼ 2 ppm upfield from those methylene carbons with \(g\pm\hbox{-}CH_{2}\hbox{--}CH_{2}\)- bonds, even though the -\(CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds are predominantly t in the highly crystalline PET and significantly g± in the nearly completely amorphous PET sample. As a consequence, we can conclude that our coalesced and included PETs have predominantly t -\(CH_{2}\hbox{--}CH_{2}\)- bonds, as-received PET predominantly g±, and our precipitated PET [ 59 ] sample seems to have about 30% g± and 70% -\(t \hbox{-} CH_{2}\hbox{--}CH_{2}\) bonds. Again, this is consistent with our molecular modeling [ 78, 84 ] and FTIR [ 21 ] results, so as-received PET has predominantly \(g\pm\hbox{-}CH_{2}\hbox{--}CH_{2}\)- bonds and substantial amounts of t -\(CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds, while coalesced, included, and precipitated PETs have preponderantly t-\(CH_{2}\hbox{--}CH_{2}\)- and \(g\pm\hbox{-}CH_{2}\hbox{--}O\)- and -\(O\hbox{--}CH_{2}\)- bonds.

The 13 C-observed 1 H spin-lattice relaxation times observed in the rotating frame \([T_{1\rho}^{1}(H)]\), which reflect motions in the kHz frequency regime, are presented as a function of temperature for our PET samples in Fig. 11 . Generally the coalesced sample has the longest and the as-received sample the shortest \(T_{1\rho}^{1}(H)\), indicating an increasing kHz mobility for PET chains in the coalesced, precipitated, and as-received samples, respectively. Also note that the \(T_{1\rho}^{1}(H)s\) of as-received PET show a marked sensitivity to temperature at TT g , which is largely unobserved in the coalesced and precipitated samples. Initially, the molecular motion increases with temperature resulting in shorter \(T_{1\rho}^{1}(H)s\) for all the PET samples. However, the \(T_{1\rho}^{1}(H)\) of the as-received PET reaches a minimum near T g , and further heating results in molecular motions that are too rapid for efficient nuclear spin energy transfer, so T 1 ρ(1 H) increases for T > T g . This is consistent with the presence and absence of a glass transition observed in the DSC scans of as-received and coalesced (see Fig. 7 ) or precipitated [ 59 ] PETs, respectively. Thus, both macroscopic (DSC) and microscopic (NMR) observations point to the absence of a glass transition in the noncrystalline regions of coalesced or precipitated PETs.

At room temperature, the 13 C spin-lattice relaxation times, \(T_{1}^{13}(C)\) in seconds, for the as-received (asr), precipitated (ppt), and coalesced (coa) PETS are C = O → 31.8 s (asr) and 36.2 s (coa, ppt); nonprotonated aromatic → 28.6 s (asr) and 36.2 (coa, ppt); protonated aromatic → 14.4 s (asr) and 21.0 s (coa, ppt); and CH 2 → 7.1 s (asr) and 9.6 s (coa, ppt).

Coalesced and precipitated PETs have longer \(T_1^{13}(C)s\) than as received PET. Thus, motions in the MHz frequency regime are also more restricted in the coalesced and precipitated PETs, compared with as-received PET, possibly because of both their higher crystallinities and the tighter packing of kink conformers in their noncrystalline regions. Temperature dependencies similar to those observed in the rotating frame for 1 Hs, \(T_{1\rho}(^{1}H)\ s\), are also observed for the \(T_{1}^{13}(C)s\). This behavior implies that the noncrystalline regions of coalesced and precipitated PETs are distinct from the amorphous regions in as-received PET, because only in as-received PET are the kHz, MHz motions important to \(T_{1\rho}(^{1}H), T_{1}(^{13}(C))\) relaxations sensitive to whether or not the sample is below or above its T g . This is again consistent with the failure to observe a glass transition by DSC for coalesced [ 21 ] and precipitated [ 33, 59 ] PETs.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Tonelli, A.E. (2009). Molecular Processing of Polymers with Cyclodextrins. In: Wenz, G. (eds) Inclusion Polymers. Advances in Polymer Science, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_2

Download citation

Publish with us

Policies and ethics