Skip to main content

Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems

  • Chapter
  • First Online:
Self Organized Nanostructures of Amphiphilic Block Copolymers I

Abstract

In this article, we outline the principles and application of several time-resolved fluorescence techniques for studying the behavior of stimuli-responsive self-assembled polymer systems. We demonstrate the high research potential of fluorescence using results of several published studies performed by the research team at the Charles University in Prague in the framework of the Marie Curie Research Training Network “Self-Organized Nanostructures of Amphiphilic Copolymers” (MRTN-CT-2003-505027). We have chosen several interesting examples of complex self-assembling systems, the behavior of which could not have been understood without the help of targeted fluorescence studies. We have chosen four different techniques, two of them relatively popular (fluorescence anisotropy and nonradiative excitation energy transfer) and two only little used in polymer science (the solvent relaxation method and fluorescence correlation spectroscopy). The last part of the article is devoted to computer simulations (Monte Carlo and molecular dynamics) aimed at the interpretation of fluorescence data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

An:

Anthracene

c.m.c.:

Critical micelle concentration

DLS:

Dynamic light scattering

FCS:

Fluorescence correlation spectroscopy

fwhm:

Full width in half-maximum

IC:

Internal conversion

ISC:

Intersystem crossing, intersystem conversion

LCST:

Lower critical solution temperature

LS:

Light scattering

MC:

Monte Carlo

MD:

Molecular dynamics

M n :

Number-average molar mass

M w :

Weight-average molar mass

NMR:

Nuclear magnetic resonance spectroscopy

Np:

Naphthalene

NRET:

Nonradiative excitation energy transfer

ORB:

Octadecyl rhodamine B

PAA:

Poly(acrylic acid)

PE:

Polyelectrolyte

PEO:

Poly(ethylene oxide)

PMA:

Poly(methacrylic acid)

PS:

Polystyrene

PVP:

Poly(2-vinylpyridine)

rhs:

Right hand side

SLS:

Static light scattering

SRM:

Solvent relaxation method

TCSPC:

Time-correlated single photon counting

TRES:

Time-resolved emission spectra

TRFS:

Time-resolved fluorescence spectroscopy

References

  1. Jablonski A (1935) Z Phys 94:38

    CAS  Google Scholar 

  2. Levine IN (1975) Molecular spectroscopy. Wiley, London

    Google Scholar 

  3. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito, California

    Google Scholar 

  4. Franck J (1926) Trans Faraday Soc 21:536

    Google Scholar 

  5. Condon E (1926) Phys Rev 28:1182

    CAS  Google Scholar 

  6. Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, New York

    Google Scholar 

  7. Beer M, Longuet-Higgins HC (1955) J Chem Phys 23:1390

    CAS  Google Scholar 

  8. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  9. Debye P (1945) Polar molecules. Dover, New York

    Google Scholar 

  10. Favro LD (1960) Phys Rew 119:53

    Google Scholar 

  11. Michl J, Thulstrup EW (1986) Spectroscopy with polarized light. VCH, New York

    Google Scholar 

  12. Procházka K, Medhage B, Mukhtar E, Almgren M, Svoboda P, Trnìná J, Bednář B (1993) Polymer 34:103

    Google Scholar 

  13. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  14. Valeur B, Monnerie L (1976) J Polym Sci Pt B-Polym Phys 14:11

    CAS  Google Scholar 

  15. Stubbs CD, Williams BW (1992) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy: biochemical applications. Plenum, New York, p 231

    Google Scholar 

  16. Lentz BR (1993) Chem Phys Lipids 64:99

    CAS  Google Scholar 

  17. Gidwani A, Holowka D, Baird B (2001) Biochemistry 40:12422

    CAS  Google Scholar 

  18. Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Biophys J 86:2929

    CAS  Google Scholar 

  19. Ha TJ, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S (1999) Proc Natl Acad Sci USA 96:893

    CAS  Google Scholar 

  20. Swaminathan R, Hoang CP, Verkman AS (1997) Biophys J 72:1900

    CAS  Google Scholar 

  21. Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW (2000) Proc Natl Acad Sci USA 97:11996

    CAS  Google Scholar 

  22. Volkmer A, Subramaniam V, Birch DJS, Jovin TM (2000) Biophys J 78:1589

    CAS  Google Scholar 

  23. Birch DJS, Geddes CD (2000) Phys Rev E 62:2977

    CAS  Google Scholar 

  24. Kujawa P, Aseyev V, Tenhu H, Winnik FM (2006) Macromolecules 39:7686

    CAS  Google Scholar 

  25. Katsumoto Y, Tsunomori F, Ushiki H, Letamendia L, Rouch J (2001) Eur Polym J 37:475

    CAS  Google Scholar 

  26. Wang B, Liu MZ, Chen Y, Liang R, Chen SL, Jin SP (2007) J Appl Polym Sci 104:1714

    CAS  Google Scholar 

  27. Pistolis G, Andreopoulou AK, Malliaris A, Kallitsis JK (2005) J Phys Chem B 109:11538

    CAS  Google Scholar 

  28. Viovy JL, Monnerie L, Merola F (1985) Macromolecules 18:1130

    CAS  Google Scholar 

  29. Viovy JL, Frank CW, Monnerie L (1985) Macromolecules 18:2606

    CAS  Google Scholar 

  30. Monnerie L (1991) J Non-Cryst Solids 131:755

    Google Scholar 

  31. Adams S, Adolf DB (1999) Macromolecules 32:3136

    CAS  Google Scholar 

  32. Kiserow D, Procházka K, Ramireddy C, Tuzar Z, Munk P, Webber SE (1992) Macromolecules 25:461

    CAS  Google Scholar 

  33. Sen S, Sukul D, Dutta P, Bhattacharyya K (2001) J Phys Chem A 105:7495

    CAS  Google Scholar 

  34. Kim C, Lee SC, Shin JH, Kwon IC, Jeong SY (2000) Macromolecules 33:7448

    CAS  Google Scholar 

  35. Sýkora J, Slavíček P, Jungwirth P, Barucha J, Hof M (2007) J Phys Chem B 111:5869

    Google Scholar 

  36. Chakrabarty A, Chakraborty D, Seth D, Hazra P, Sarkar N (2005) Chem Phys Lett 412:255

    CAS  Google Scholar 

  37. Sen P, Roy D, Mondal SK, Sahu K, Ghosh S, Bhattacharyya K (2005) J Phys Chem A 109:9716

    CAS  Google Scholar 

  38. Lang B, Angulo G, Vauthey E (2006) J Phys Chem A 110:7028

    CAS  Google Scholar 

  39. Hutterer R, Schneider FW, Sprinz H, Hof M (1996) Biophys Chem 61:151

    CAS  Google Scholar 

  40. Moyano F, Biasutti MA, Silber JJ, Correa NM (2006) J Phys Chem B 110:11838

    CAS  Google Scholar 

  41. Rowe BA, Neal SL (2006) J Phys Chem B (2006) 110:15021

    Google Scholar 

  42. Lippert E (1957) Z Elektrochem 61:962

    CAS  Google Scholar 

  43. Badea MG, DeToma RP, Brand L (1978) Biophys J 24:197

    CAS  Google Scholar 

  44. Chattopadhyay A, Mukherjee S (1993) Biochemistry 32:3804

    CAS  Google Scholar 

  45. Hutterer R, Schneider FW, Lanig H, Hof M (1997) Biochim Biophys Acta – Biomembranes 1323:195

    Google Scholar 

  46. Gafni A, DeToma RP, Manrow RE, Brand L (1977) Biophys J 17:155

    CAS  Google Scholar 

  47. Toptygin D, Gronenborn AM, Brand L (2006) J Phys Chem B 10:26292

    Google Scholar 

  48. Brauns, EB, Madaras ML, Coleman, RS, Murphy CJ, Berg MA (1999) J Am Chem Soc 121:11644

    CAS  Google Scholar 

  49. Middelhoek ER, Vandermeulen P, Verhoeven JW, Glasbeek M (1995) Chem Phys 198:373

    CAS  Google Scholar 

  50. Gulbinas V, Markovitsi D, Gustavsson T, Karpicz R, Veber M (2000) J Phys Chem A 104:5181

    CAS  Google Scholar 

  51. Chakrabarty D, Charkraborty A, Seth D, Sarkar N (2005) J Phys Chem A 109:1764

    CAS  Google Scholar 

  52. Cichos F, Willert A, Rempel U, von Borczykowski C (1997) J Phys Chem A 101:8179

    CAS  Google Scholar 

  53. Molotsky T, Huppert D (2003) J Phys Chem A 107:8449

    CAS  Google Scholar 

  54. Mukherjee S, Sahu K, Roy D, Mondal SK, Bhattacharyya K (2004) Chem Phys Lett 384:128

    CAS  Google Scholar 

  55. Sen P, Ghosh S, Sahu K, Mondal SK, Roy D, Bhattacharyya K (2006) J Chem Phys 124:204905

    Google Scholar 

  56. Adikhari A, Dey S, Das DK, Mandal U, Ghosh S, Bhattacharyya K (2008) J Phys Chem B 112:6350

    Google Scholar 

  57. Kasha M (1952) J Chem Phys 20:71

    CAS  Google Scholar 

  58. Stern O, Volmer M (1919) Phys Z 20:183

    CAS  Google Scholar 

  59. Förster T (1949) Z Naturforsch 4A:321

    Google Scholar 

  60. Förster T (1959) Discuss Faraday Soc 7:27

    Google Scholar 

  61. Van Der Meer WB, Coker G, Chen SS-Y (1991) Resonance energy transfer. Wiley, New York

    Google Scholar 

  62. Dale RE, Eisinger J, Blumberg WE (1979) Biophys J 26:161

    CAS  Google Scholar 

  63. Eisinger J, Blumberg WE, Dale RE (1981) Biophys J 33:155

    Google Scholar 

  64. Chee CK, Rimmer S, Soutar I, Swanson L (2001) Polymer 42:5079

    CAS  Google Scholar 

  65. Kuzmenkina EV, Heyes CD, Nienhaus GU (2005) Proc Natl Acad Sci USA 102:15471

    CAS  Google Scholar 

  66. Suwa M, Hashidzume A, Morishima Y, Nakato T, Tomida M (2000) Macromolecules 33:7884

    CAS  Google Scholar 

  67. Holappa S, Kantonen L, Winnik FM, Tenhu H (2004) Macromolecules 37:7008

    CAS  Google Scholar 

  68. Dias FB, Knaapila M, Monkman AP, Burrows HD (2006) Macromolecules 39:1598

    CAS  Google Scholar 

  69. Pham HH, Farinha JPS, Winnik MA (2000) Macromolecules 33:5850

    CAS  Google Scholar 

  70. Xiang ML, Jiang M, Zhang YB, Wu C, Feng LX (1997) Macromolecules 30:2313

    CAS  Google Scholar 

  71. Feng JR, Yekta A, Winnik MA (1996) Chem Phys Lett 260:296

    CAS  Google Scholar 

  72. Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, Michailova EV, Shtilman MI (2001) Biomaterials 22:3035

    CAS  Google Scholar 

  73. Mizusaki M, Morishima Y, Winnik FM (1999) Macromolecules 32:4317

    CAS  Google Scholar 

  74. Barros TC, Adronov A, Winnik FM, Bohne C (1997) Langmuir 13:6089

    CAS  Google Scholar 

  75. Magde D, Elson EL, Webb WW (1974) Biopolymers 13:29

    CAS  Google Scholar 

  76. Schwille P, Bieschke J, Oehlenschlager F (1997) Biophys Chem 66:211

    CAS  Google Scholar 

  77. Schwille P (2001) Cell Biochem Biophys 34:383

    CAS  Google Scholar 

  78. Sanchez SA, Gratton E (2005) Acc Chem Res 38:469

    CAS  Google Scholar 

  79. Remaut K, Lucas B, Raemdonck K, Beckmans K, Demeester J, De Smedt SC (2007) J Controlled Release 121:49

    CAS  Google Scholar 

  80. Humpolíčková J, Beranová L, Štěpánek M, Benda A, Procházka K, Hof M (2008) J Phys Chem B 112:16823

    Google Scholar 

  81. Zettl H, Hafner W, Boker A, Schmalz H, Lanzendorfer M, Müller AHE, Krausch G (2004) Macromolecules 37:1917

    CAS  Google Scholar 

  82. Bonne TB, Papadakis CM, Ludtke K, Jordan R (2006) Colloid Polym Sci 285:491

    Google Scholar 

  83. Pecora BJ, Pecora R (2000) Dynamic light scattering. Wiley, New York

    Google Scholar 

  84. Humpolíčková J, Procházka K, Hof M, Tuzar Z, Špírková M (2003) Langmuir 19:4119

    Google Scholar 

  85. Wu B, Chen Y, Muller JD (2008) Biophys J 94:2800

    CAS  Google Scholar 

  86. Bednář B, Trnǐná J, Svoboda P, Vajda S, Fidler V, Procházka K (1991) Macromolecules 24:2054

    Google Scholar 

  87. Košovan P, Limpouchová Z, Procházka K (2006) Macromolecules 39:3458

    Google Scholar 

  88. Štěpánek M, Matějíček P, Humpolíčková J, Procházka K (2005) Langmuir 21:10783

    Google Scholar 

  89. Humpolíčková J, Št\(\check{\mathrm{e}}\)pánek M, Procházka K, Hof M (2005) J Phys Chem A 109:10803

    Google Scholar 

  90. Matějíček P, Podhájecká K, Humpolíčková J, Uhlík F, Jelínek K, Limpouchová Z, Procházka K, Špírková M (2004) Macromolecules 37:10141

    Google Scholar 

  91. Uhlík F, Limpouchová Z., Jelínek K, Procházka K (2004) J Phys Chem 121:2367

    Google Scholar 

  92. Uhlík F, Limpouchová Z, Mat\(\check{\mathrm{e}}\)jíček P, Procházka K, Tuzar Z, Webber SE (2002) Macromolecules 35:9497

    Google Scholar 

  93. Matějíček P, Uhlík F, Limpouchová Z, Procházka K, Tuzar Z, Webber SE (2002) Macromolecules 35:9487

    Google Scholar 

  94. Matějíček P, Humpolíčková J, Procházka K, Tuzar Z, Špírková M, Hof M, Webber SE (2003) J Phys Chem B 107:8232

    Google Scholar 

  95. Uhlík F, Limpouchová Z, Jelínek K, Procházka K (2003) J Phys Chem 118:11258

    Google Scholar 

  96. Matějíček P, Uhlík F, Limpouchová Z, Procházka K, Tuzar Z, Webber SE (2002) Collect Czech Chem Commun 67:531

    Google Scholar 

  97. Štěpánek M, Humpolí\(\check{\mathrm{c}}\)ková J, Procházka K, Hof M, Tuzar Z, Špírková M, Wolff T (2003) Collect Czech Chem Commun 68:2120

    Google Scholar 

  98. Štěpánek M, Mat\(\check{\mathrm{e}}\)jíček P, Humpolíčková J, Havránková J, Podhajecká K, Špírková M, Tuzar Z, Tsitsilianis C, Procházka K (2005) Polymer 46:10493

    Google Scholar 

  99. Dobrynin AV, Rubinstein M, Obukhov SP (1996) Macromolecules 29:2974

    CAS  Google Scholar 

  100. Dautzenberg H, Jaeger W, Kotz BPJ, Seidel C, Stscherbina D (1994) Polyelectrolytes: formation, characterization and applications. Hanser, Munich

    Google Scholar 

  101. Khokhlov AR (1980) J Phys Chem A 13:979

    CAS  Google Scholar 

  102. Kantor Y, Kardar M (1995) Phys Rev E 51:1299

    CAS  Google Scholar 

  103. Lord Rayleigh (1882) Philos Mag 14:184

    Google Scholar 

  104. Limbach HJ, Holm C (2003) J Phys Chem. B 32:8041

    Google Scholar 

  105. Limbach HJ, Holm C, Kremer K (2004) Macromol Symp 211:43

    CAS  Google Scholar 

  106. Raphael E, Joanny JF (1990) Europhys Lett 13:623

    CAS  Google Scholar 

  107. Uyaver S, Seidel C (2003) Europhys Lett 64:536

    CAS  Google Scholar 

  108. Uyaver S, Seidel C (2004) J Phys Chem B 180:18804

    Google Scholar 

  109. Ulrich S, Laguecir A, Stoll S (2005) J Chem Phys 122:094911

    Google Scholar 

  110. Laguecir A, Ulrich S, Labille J, Fatin-Rouge N, Stoll S, Buffle J (2006) Eur Polym J 42:1135

    CAS  Google Scholar 

  111. Borukhov I, Andelman D, Borrega R, Cloitre M, Leibler L, Orland H (2000) J Phys Chem B 104:11027

    CAS  Google Scholar 

  112. Katchalski A (1951) J Polym Sci 7:393

    Google Scholar 

  113. Strauss UP, Schlesinger MS (1978) J Phys Chem 82:571

    CAS  Google Scholar 

  114. Strauss UP, Schlesinger MS (1978) J Phys Chem 82:1627

    CAS  Google Scholar 

  115. Strauss UP, Vesnaver G (1975) J Phys Chem 79:1558

    CAS  Google Scholar 

  116. Strauss UP, Vesnaver G (1975) J Phys Chem 79:2426

    CAS  Google Scholar 

  117. Wang Y, Morawetz H (1986) Macromolecules 19:1925

    CAS  Google Scholar 

  118. Ghiggino KP, Tan KL (1985) In: Phillips D (ed) Polymer photophysics. Chapman and Hall, London

    Google Scholar 

  119. Popelka S, Machová LK, Rypáček F, Špírková M, Štěpánek M, Matějíček P, Procházka K (2005) Collect Czech Chem Commun 70:1811

    CAS  Google Scholar 

  120. Matějíček P, Št\(\check{\mathrm{e}}\)pánek M, Uchman M, Procházka K, Špírková M (2006) Collect Czech Chem Commun 71:723

    Google Scholar 

  121. Šachl R, Uchman M, Matějíček P, Procházka K, Štěpánek M, Špírková M (2007) Langmuir 23:3395

    Google Scholar 

  122. Harada A, Kataoka K (2006) Prog Polym Sci 31:949

    CAS  Google Scholar 

  123. Polik WF, Burchard W (1983) Macromolecules 16:978

    CAS  Google Scholar 

  124. Zhou P, Brown W (1990) Macromolecules 23:1131

    CAS  Google Scholar 

  125. Kinugasa S, Nakahara H, Fudagawa N, Koga Y (1994) Macromolecules 27:6889

    CAS  Google Scholar 

  126. Polverari M, van de Ven TGM (1996) J Phys Chem 100:13687

    CAS  Google Scholar 

  127. Duval M. (2000) Macromolecules 33:7862

    CAS  Google Scholar 

  128. Hammouda B, Ho DL, Kline S (2004) Macromolecules 37:6932

    CAS  Google Scholar 

  129. De Gennes, PG (1991) C R Acad Sci, Ser II 313:1117

    Google Scholar 

  130. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) J Phys Chem 99:17311

    CAS  Google Scholar 

  131. Fee RS, Maroncelli M (1994) Chem Phys 183:235

    CAS  Google Scholar 

  132. Martin TJ, Procházka K, Munk P, Webber SE (1996) Macromolecules 29:6071

    CAS  Google Scholar 

  133. Bieze TWN, Barnes AC, Huige CJM, Enderby JE, Leyte JC (1994) J Phys Chem 98:6568

    CAS  Google Scholar 

  134. Blandamer MJ, Fox MF, Powell E, Stafford JW (1967) Makromol Chem 124:222

    Google Scholar 

  135. Šachl R, Štěpánek M, Procházka K, Humpolíčková J, Hof M (2008) Langmuir 24:288

    Google Scholar 

  136. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF (2009) J Pharm Sci 98:1

    CAS  Google Scholar 

  137. Zhao Q, Ni PH (2006) Prog Chem 18:768

    CAS  Google Scholar 

  138. Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K (1999) Macromolecules 32:8024

    CAS  Google Scholar 

  139. Otsuka H, Nagasaki Y, Kataoka K (2001) Curr Opin Colloid Interface Sci 6:3

    CAS  Google Scholar 

  140. Dufresne MH, Gauthier MA, Leroux JC (2005) Bioconjugate Chem 16:1027

    CAS  Google Scholar 

  141. Rieger J, Stoffelbach F, Cui D, Imberty A, Lameignere E, Putaux JL, Jerôme R, Auzely-Velty R (2007) Biomacromolecules 8:2717

    CAS  Google Scholar 

  142. Hu ZY, Luo F, Pan YF, Hou C, Ren LF, Chen JJ, Wang JW, Zhang YD (2008) J Biomed Mater Res A 85A:797

    CAS  Google Scholar 

  143. Martin TJ, Webber SE (1995) Macromolecules 28:8845

    CAS  Google Scholar 

  144. Berlman IB (1973) Energy transfer parameters of aromatic compounds. Academic, New York

    Google Scholar 

  145. Shusharina NP, Linse P (2001) Eur Phys J 4:399

    CAS  Google Scholar 

  146. Micka U, Holm C, Kremer K (1999) Langmuir 15:4033

    CAS  Google Scholar 

  147. Heitz C, Rawiso M, Francois J (1999) 40:1637

    CAS  Google Scholar 

  148. Košovan P, Limpouchová Z, Procházka K (2008) Collect Czech Chem Commun 73:439

    Google Scholar 

  149. Allen DJ, Tildesley MP (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  150. Limbach HJ, Holm C (2001) J Chem Phys 114:9674

    CAS  Google Scholar 

  151. Morcellet M, Wozniak M (1991) Macromolecules 24:745

    CAS  Google Scholar 

  152. Porasso RD, Benegas JC, van den Hoop MAGT (1999) J Phys Chem B 103:2361

    CAS  Google Scholar 

  153. Lide DR, Frederikse HPR (1995) Handbook of chemistry and physics, 76th edn. CRC, Boca Raton, FL

    Google Scholar 

  154. Zettl H, Häfner W, Böker A, Schmalz H, Lanzendörfer M, Müller AHE, Krausch G (2004) Macromolecules 37:1917

    CAS  Google Scholar 

  155. Zettl H, Zettl U, Krausch G, Enderlein J, Ballauff M (2007) Phys Rev E 75:061804

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the EU support (Marie Curie MRTN-CT-2003-505027, “POLYAMPHI”), the support of the Ministry of Education, Youths and Sports of the Czech Republic (Research Plan MSM0021620857), the Grant Agency of the Czech Republic (203/07/0659), the Grant Agency of the Academy of Sciences of the Czech Republic (IAA400400621, IAA401110702, and KJB401110701) and the Grant Agency of Charles University (43-257269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Procházka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Procházka, K. et al. (2010). Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems. In: Müller, A., Borisov, O. (eds) Self Organized Nanostructures of Amphiphilic Block Copolymers I. Advances in Polymer Science, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_56

Download citation

Publish with us

Policies and ethics