Skip to main content

Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers

  • Chapter
  • First Online:
Enzymatic Polymerisation

Part of the book series: Advances in Polymer Science ((POLYMER,volume 237))

Abstract

This chapter details the exploitation of biocatalysis in generating supramolecular polymers. This approach provides highly dynamic supramolecular structures, inspired by biological polymeric systems found in the intra- and extracellular space. The molecular design of the self-assembling precursors is discussed in terms of enzyme recognition, molecular switching mechanisms and non-covalent interactions that drive the supramolecular polymerisation process, with an emphasis on aromatic peptide amphiphiles. We discuss a number of unique features of these systems, including spatiotemporal control of nucleation and growth of supramolecular polymers and the possibility of kinetically controlling mechanical properties. Fully reversible systems that operate under thermodynamic control allow for defect correction and selection of the most stable structures from mixtures of monomers. Finally, a number of potential applications of enzymatic supramolecular polymerisations are discussed in the context of biomedicine and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Lehn JM (1995) Supramolecular chemistry – concepts and perspectives. VCH Weinheim

    Google Scholar 

  • Lehn JM (2002) Supramolecular polymer chemistry – scope and perspectives. Polym Int 51:825–839

    Article  CAS  Google Scholar 

  • Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835

    Article  CAS  Google Scholar 

  • Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18:611–614

    Article  CAS  Google Scholar 

  • Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SL (2004) Selective differentation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  Google Scholar 

  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci 97:6728–6733

    Article  CAS  Google Scholar 

  • Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029

    Article  CAS  Google Scholar 

  • Matsumoto S, Yamaguchi S, Ueno S, Komatsu H, Ikeda M, Ishizuka K, Iko Y, Tabata KV, Aoki H, Ito S, Noji H, Hamachi I (2008) Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive. Biomaterials 14:3977–3986

    CAS  Google Scholar 

  • Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947

    Article  CAS  Google Scholar 

  • Yang Z, Liang G, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326

    Article  CAS  Google Scholar 

  • Ulijn RV (2006) Enzyme responsive materials: a new class of smart biomaterials. J Mat Chem 16:2217–2225

    Article  CAS  Google Scholar 

  • Colombo M, Brittingham RJ, Klement JF, Majsterek I, Birk DE, Uitto J, Fertala A (2003) Procollagen VII self-assembly depends on site-specific interactions and is promoted by cleavage of the NC2 domain with procollagen C-proteinase. Biochemistry 42:11434–11442

    Article  CAS  Google Scholar 

  • Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS (1996) Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science 271:360–362

    Article  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  CAS  Google Scholar 

  • Feratala A, Sieron A, Hojima Y, Ganguli A, Prockop DJ (1994) Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem 269:11584–11589

    Google Scholar 

  • Kadler K, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem 262:15696–15701

    CAS  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott, MP, Zipursky SL, Darnell J (2003) Molecular cell biology, 5th edn. Freeman, New York

    Google Scholar 

  • Wu L.-Q, Payne GF (2004) Biofabrication: the use of biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol 22:593–599

    Article  CAS  Google Scholar 

  • Hu BH, Messersmith PB (2003) Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J Am Chem Soc 125:14298–14299

    Article  CAS  Google Scholar 

  • Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-cross- linked poly(ethylene glycol) hydrogels. Macromolecules 30:5255–5264

    Article  CAS  Google Scholar 

  • Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2009) Enzyme- assisted self-assembly under thermodynamic control. Nat Nanotechnol 4:19–24

    Article  CAS  Google Scholar 

  • Das AK, Collins R, Ulijn RV (2008) Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 4:279–287

    Article  CAS  Google Scholar 

  • Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071

    Article  CAS  Google Scholar 

  • Yang Z, Ma M, Xu B (2009) Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter 5:2546–2548

    CAS  Google Scholar 

  • Adler-Abramovich L, Perry R, Sagi A, Gazit E, Shabat D (2007) Controlled assembly of peptide nanotubes triggered by enzymatic activation of self-immolative dendrimers. Chembiochem 8:859–862

    Article  CAS  Google Scholar 

  • Dos Santos S, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucede L, Tella P, Tuchscherer G, Mutter M (2005) Switch-peptides: controlling self-Assembly of amyloid β-derived peptides in vitro by consecutive triggering of acyl migrations. J Am Chem Soc 127:11888–11889

    Article  Google Scholar 

  • Yang Z, Gu H, Fu D, Gao P, Lam JK, Xu B (2004) Enzymatic formation of supramolecular hydrogels. Adv Mater 16:1440–1444

    Article  CAS  Google Scholar 

  • Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39:12739–12746

    Article  CAS  Google Scholar 

  • Kühnle H, Börner HG, (2009) Biotransformation on polymer-peptide conjugates: a versatile tool to trigger microstructure formation. Angew Chem Int Ed 48:6431–6434

    Article  Google Scholar 

  • Amir RJ, Zhong S, Pochan DJ, Hawker CJ (2009) Enzymatically triggered self-assembly of block copolymers. J Am Chem Soc 131:13949–13951

    Article  CAS  Google Scholar 

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  CAS  Google Scholar 

  • Plunkett KN, Berkowski KL, Moore JS (2005) Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides Biomacromolecules 6:632–637

    CAS  Google Scholar 

  • Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892

    Article  CAS  Google Scholar 

  • Van Bommel KJC, Stuart MCA, Feringa BL, Van Esch J (2005) Two-stage enzyme mediated drug release from LMWG hydrogels. Org Biomol Chem 3:2917–2920

    Article  Google Scholar 

  • Jun HW, Yuwono V, Paramonov, SE, Hartgerink JD (2005) Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater 17:2612–2617

    Article  CAS  Google Scholar 

  • Chau Y, Luo Y, Cheung ACY, Nagai Y, Zhang SG, Kobler JB, Zeitels SM, Langer R (2008) Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides as a model for biofunctional scaffolds. Biomaterials 29:1713–1719

    Article  Google Scholar 

  • Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramoleclar hydrogel in vivo. J Am Chem Soc 128:3038–3043

    Article  CAS  Google Scholar 

  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5:797–801

    Article  CAS  Google Scholar 

  • Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  Google Scholar 

  • Whitesides GM, Grzybowski BA (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  • Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM (2009) Self-assembly: from crystals to cells. Soft Matter 5:1110–1128

    Article  CAS  Google Scholar 

  • Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK (2008) Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 130:9113–9121

    Article  CAS  Google Scholar 

  • Rughani RV, Schneider JR (2008) Molecular design of beta-hairpin peptides for material construction. MRS Bull 33:530–535

    Article  CAS  Google Scholar 

  • de Loos M, Feringa BL, van Esch JH (2005) Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem 3615–3631

    Google Scholar 

  • Kobayashi H, Friggeri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt DN (2002) Molecular design of “super” hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water. Org Lett 4:1423–1426

    Article  CAS  Google Scholar 

  • Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567

    Article  CAS  Google Scholar 

  • Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Zhang S (2009) Designer self-assembling peptide nanomaterials. Nano Today 4:193–210

    Article  Google Scholar 

  • Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1218

    Article  CAS  Google Scholar 

  • Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1:195–200

    Article  CAS  Google Scholar 

  • Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-interlocked β-sheets. Adv Mater 20:37–41

    Article  CAS  Google Scholar 

  • Smith AM, Ulijn RV (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675

    Article  Google Scholar 

  • Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P (2009) A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5:1856–1862

    Article  CAS  Google Scholar 

  • Vegners R, Shestakova I, Kalvinsh I, Ezzell RM, Janmey PA (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1:371–378

    Article  CAS  Google Scholar 

  • Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pK(a) shifts. Langmuir 25:9447–9453

    Article  CAS  Google Scholar 

  • Thornton K, Smith AM, Merry CLR, Ulijn RV (2009) Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochem Soc Trans 37:660–664

    Article  CAS  Google Scholar 

  • Yang ZM, Liang GL, Xu B (2007) Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter 3:515–520

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  • Ulijn RV, De Martin L, Gardossi L, Halling PJ (2003) Biocatalysis with mainly undissolved solid substrates. Curr Org Chem 7:1333–1346

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  • Halling PJ, Ulijn RV, Flitsch SL (2005) Understanding enzyme action on immobilized substrates. Curr Opin Biotechnol 16:385–392

    Article  CAS  Google Scholar 

  • Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711

    Article  CAS  Google Scholar 

  • Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41:898–952

    Article  Google Scholar 

  • Sreenivasachary N, Lehn JM (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Nat Acad Sci 102:5938–5943

    Article  CAS  Google Scholar 

  • Otto S, Furlan RLE, Sanders JKM (2002) Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides. Science 297:590–593

    Article  CAS  Google Scholar 

  • Ludlow RF, Otto S (2008) Systems chemistry. Chem Soc Rev 37:101–108

    Article  CAS  Google Scholar 

  • Bilgiçer B, Xing X, Kumar K (2001) Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 123:11815–11816

    Article  Google Scholar 

  • Krishnan-Ghosh Y, Balasubramanian S (2003) Dynamic covalent chemistry on self-templating peptides: formation of a disulfide-linked -hairpin mimic. Angew Chem Int Ed 42:2171–2173

    Article  CAS  Google Scholar 

  • Case MA, McLendon GL (2000) A virtual library approach to investigate protein folding and internal packing. J Am Chem Soc 122:8089–8090

    Article  CAS  Google Scholar 

  • Das AK, Hirst A, Ulijn RV (2009) Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL). Faraday Discuss 143:293–303

    Article  CAS  Google Scholar 

  • Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage dependent cells. Biomaterials 30:2523–2530

    Article  CAS  Google Scholar 

  • Jayawarna V, Richardson SM, Hirst A, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943

    Article  CAS  Google Scholar 

  • Gao Y, Kuang Y, Guo ZF, Guo Z, Krauss IJ, Xu B (2009) Enzyme-instructed self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131:13576–13577

    Article  CAS  Google Scholar 

  • Yang ZM, Xu B (2004) A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem Commun 2424–2425

    Google Scholar 

  • Yang ZM, Liang GL, Ma ML, Gao Y, Xu B (2007) In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative. Small 3:558–562

    Article  CAS  Google Scholar 

  • Yang ZM, Xu KM, Guo ZF, Guo ZH, Xu B (2007) Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater 19:3152–3156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rein V. Ulijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Roy, S., Ulijn, R.V. (2010). Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers. In: Palmans, A., Heise, A. (eds) Enzymatic Polymerisation. Advances in Polymer Science, vol 237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_75

Download citation

Publish with us

Policies and ethics