Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 254))

Abstract

Biodegradable polymers are being extensively used with great interest in areas of nanobiotechnology such as drug delivery, diagnostics, and other applications for clinical and biomedical research covering cardiovascular diseases, diabetes, osteogenesis, cancer, and tissue engineering. Various biodegradable polymers such as poly(lactic acid), poly(lactic-co-glycolic acid), poly (ε-caprolactone), chitosan, gelatin, and poly(alkyl cyanoacrylates) have been extensively utilized as polymeric materials and devices for targeted cellular and tissue-specific clinical applications to achieve maximal therapeutic efficacy with minimal or no side effects. Recently, polymeric nanoparticles have revolutionized the area of nanobiotechnology by creating new opportunities for advancing medical science and disease treatment. Polymeric nanoparticles have the potential to act as a carrier of drugs and active constituents to targeted sites, protecting them from the environment and controlling their release rates, thereby enhancing their biological activity and decreasing the adverse side effects. This article compiles updated information regarding various biodegradable polymers, methods of preparation of biodegradable polymeric nanoparticles, and their application in therapeutic and diagnostic strategies for various diseases. This article will support research scientists and clinical physicians who are interested in the development and application of biodegradable polymeric nanoparticles as potential delivery systems for therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katti DS, Lakshmi S, Langer R et al (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    CAS  Google Scholar 

  2. Jalil R, Nixon JR (1990) Biodegradable poly (lactic acid) and poly (lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul 7:297–325

    CAS  Google Scholar 

  3. Tice TR, Tabibi ES (1991) Parenteral drug delivery: injectables. In: Kydonieus A (ed) Treatise on controlled drug delivery: fundamentals optimization, applications. Dekker, New York, pp 315–339

    Google Scholar 

  4. Wu XS (1995) Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. In: Wise DL et al (eds) Encyclopedic handbook of biomaterials and bioengineering. Dekker, New York, pp 1151–1200

    Google Scholar 

  5. Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48:342–353

    CAS  Google Scholar 

  6. Orive G, Hernandez RM, Rodriguez Gascon A et al (2003) Drug delivery in biotechnology: present and future. Curr Opin Biotechnol 14:659–664

    CAS  Google Scholar 

  7. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    CAS  Google Scholar 

  8. Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5

    CAS  Google Scholar 

  9. Williams D (2004) Nanotechnology: a new look. Med Device Technol 15:9–10

    Google Scholar 

  10. Cheng MMC, Cuda G, Bunimovich YL et al (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    CAS  Google Scholar 

  11. Shaffer C (2005) Nanomedicine transforms drug delivery. Drug Discov Today 10:1581–1582

    Google Scholar 

  12. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    CAS  Google Scholar 

  13. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    CAS  Google Scholar 

  14. Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6:17–33

    CAS  Google Scholar 

  15. Emerich DF (2005) Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5

    CAS  Google Scholar 

  16. Norakankorn C, Pan Q, Rempel GL et al (2010) Factorial experimental design on synthesis of functional core/shell polymeric nanoparticles via differential microemulsion polymerization. J Appl Polym Sci 116:1291–1298

    CAS  Google Scholar 

  17. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    CAS  Google Scholar 

  18. Chenga J, Teplya BA, Sherifia I et al (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876

    Google Scholar 

  19. Williams DF, Zhong SP (1994) Biodeterioration/biodegradation of polymeric medical devices in situ. Int Biodeter Biodegrad 34:95–130

    CAS  Google Scholar 

  20. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    CAS  Google Scholar 

  21. Labow RS, Tang Y, McCloskey CB et al (2002) The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly (urethan)s. J Biomater Sci Polym Ed 13:651–665

    CAS  Google Scholar 

  22. Lee KH, Chu CC (2000) The role of superoxide ions in the degradation of synthetic absorbable sutures. J Biomed Mater Res 49:25–35

    CAS  Google Scholar 

  23. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    CAS  Google Scholar 

  24. Shalaby W, Park H (1994) Chemical modification of proteins and polysaccharides and its effect on enzyme-catalyzed degradation. In: Shalaby S (ed) Biomedical polymers. Hanser Publishers, Munich, pp 213–258

    Google Scholar 

  25. Zhang Y, Zale S, Sawyer L et al (1997) Effects of metal salts on poly (dl-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res 34:531–538

    CAS  Google Scholar 

  26. Hakkarainen M, Albetsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxy-acids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stabil 52:283–291

    CAS  Google Scholar 

  27. Loo SCJ, Tan WLJ, Khoa SM et al (2008) Hydrolytic degradation characteristics of irradiated multi-layered PLGA films. Int J Pharm 360:228–230

    CAS  Google Scholar 

  28. Tsuji H, Shimizu K, Sato Y (2012) Hydrolytic degradation of poly (l-lactic acid): combined effects of UV treatment and crystallization. J Appl Polym Sci 125:2394–2406

    CAS  Google Scholar 

  29. Singh NK, Banik RM, Kulriya PK et al (2009) Nanoparticle-induced biodegradation of poly(ε-caprolactone). Nanosci Nanotechnol Lett 1:52–56

    CAS  Google Scholar 

  30. Singh NK, Purkayastha BD, Roy JK et al (2010) Nanoparticle-induced controlled biodegradation and its mechanism in poly (ε-caprolactone). Appl Mater Interfaces 2:69–81

    CAS  Google Scholar 

  31. Singh NK, Purkayastha BD, Roy JK et al (2011) Tuned biodegradation using poly(hydroxybutyrate-co-valerate) nanobiohybrids: emerging biomaterials for tissue engineering and drug delivery. J Mater Chem 21:15919–15927

    CAS  Google Scholar 

  32. Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    CAS  Google Scholar 

  33. Yeh M-K, Davis SS, Coombes AGA (1996) Improving protein delivery from microparticles using blends of poly(d, l lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Pharm Res 13:1693–1698

    CAS  Google Scholar 

  34. Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116:1–9

    CAS  Google Scholar 

  35. Tabata Y, Ikada Y (1990) Phagocytosis of polymer microspheres by macrophages. Adv Polym Sci 94:107–141

    CAS  Google Scholar 

  36. Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16:195–214

    CAS  Google Scholar 

  37. Arshady R (1991) Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J Control Release 17:1–22

    CAS  Google Scholar 

  38. Song C, Labhasetwar V, Guzman L et al (1995) Dexamethasone-nanoparticles for intra-arterial localization in restenosis in rats. Proc Int Symp Control Release Bioact Mater 22:444–445

    Google Scholar 

  39. Dawson GF, Halbert GW (2000) The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm Res 17:1420–1425

    CAS  Google Scholar 

  40. Muller RH, Maaben S, Weyhers H et al (1996) Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm 138:85–94

    Google Scholar 

  41. Leroux JC, Allemann E, De Jaeghere F et al (1996) Biodegradable nanoparticles-from sustained release formulations to improved site specific drug delivery. J Control Release 39:339–350

    CAS  Google Scholar 

  42. Niwa T, Takeuchi H, Hino T et al (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d, l-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 25:89–98

    CAS  Google Scholar 

  43. Murakami H, Kobayashi M, Takeuchi H et al (1999) Preparation of poly (d, l-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 187:143–152

    CAS  Google Scholar 

  44. Wattenberg LW, Wiedmann TS, Estensen RD et al (1997) Chemoprevention of pulmonary carcinogenesis by aerosolized budesonide in female A/J mice. Cancer Res 57:5489–5492

    CAS  Google Scholar 

  45. Lee YH, Mei F, Bai MY et al (2010) Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release 145:58–65

    CAS  Google Scholar 

  46. Jain AK, Swarnakar NK, Das M et al (2011) Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Mol Pharm 8:1140–1151

    CAS  Google Scholar 

  47. Fagui AE, Amiel C (2012) PLA nanoparticles coated with a β-cyclodextrin polymer shell: preparation, characterization and release kinetics of a hydrophobic compound. Int J Pharmaceut 436:644–651. doi:10.1016/j.ijpharm.2012.07.052

    Google Scholar 

  48. Byun Y, Hwang JB, Bang SH et al (2011) Formulation and characterization of α-tocopherol loaded poly ε-caprolactone (PCL) nanoparticles. LWT Food Sci Technol 44:24–28

    CAS  Google Scholar 

  49. Anitha A, Deepagan VG, Divya Rani VV et al (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym 84:1158–1164

    CAS  Google Scholar 

  50. Vanderhoff JW, Mohamed S, Aasser El et al (1979) Polymer emulsification process. US Patent 4,177,177

    Google Scholar 

  51. Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  52. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release 128:185–199

    CAS  Google Scholar 

  53. Julienne VMC, Benoit JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128

    Google Scholar 

  54. Vandorpe J, Schacht E, Stolnik S et al (1996) Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide). Biotechnol Bioeng 52:89–95

    CAS  Google Scholar 

  55. Song CX, Labhasetwar V, Murphy H et al (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Google Scholar 

  56. Lemoine D, Preat V (1998) Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release 54:15–27

    CAS  Google Scholar 

  57. Zambaux MF, Bonneaux F, Gref R et al (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40

    CAS  Google Scholar 

  58. Quellec P, Gref R, Dellacherie E et al (1999) Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res A 47:388–395

    CAS  Google Scholar 

  59. Bilati U, Allemann E, Doelker E (2003) Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm Dev Technol 8:1–9

    CAS  Google Scholar 

  60. Mainardes RM, Evangelista RC (2005) Praziquantel-loaded PLGA nanoparticles: preparation and characterization. J Microencapsul 22:13–24

    CAS  Google Scholar 

  61. Quintanar-Guerrero D, Allemann E, Fessi H et al (1998) Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    CAS  Google Scholar 

  62. Bindschaedler C, Gurny R, Doelker E (1990) Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase, the resulting powder and utilization thereof. US Patent 4,968,350

    Google Scholar 

  63. Allemann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm 87:247–253

    CAS  Google Scholar 

  64. Zhang Z, Grijpma DW, Feijen J (2006) Poly (trimethylene carbonate) and monomethoxy poly (ethylene glycol)-block-poly(trimethylene carbonate) nanoparticles for the controlled release of dexamethasone. J Control Release 111:263–270

    CAS  Google Scholar 

  65. Fessi H, Puisieux F, Devissaguet JP et al (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:1–4

    Google Scholar 

  66. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24

    CAS  Google Scholar 

  67. Thioune O, Fessi H, Devissaguet JP et al (1997) Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm 146:233–238

    CAS  Google Scholar 

  68. Moinard-Checot D, Chevalier Y, Briancon S et al (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468

    CAS  Google Scholar 

  69. Kim E, Yang J, Choi J et al (2009) Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20:365602

    Google Scholar 

  70. Legrand P, Lesieur S, Bochot A et al (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43

    CAS  Google Scholar 

  71. Nehilla BJ, Bergkvist M, Popat KC et al (2008) Purified and surfactant free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 348:107–114

    CAS  Google Scholar 

  72. Yallapu MM, Gupta BK, Jaggi M et al (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29

    CAS  Google Scholar 

  73. Jeong YI, Cho CS, Kim SH et al (2001) Preparation of poly (d-l-lactide-co-glycolide) nanoparticles without surfactant. J Appl Polym Sci 80:2228–2236

    CAS  Google Scholar 

  74. Kostog M, Kohler S, Liebert T et al (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294:96–106

    Google Scholar 

  75. Barichello JM, Morishita M, Takayama K et al (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476

    CAS  Google Scholar 

  76. Nemati F, Dubernet C, Fessi H et al (1996) Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer. Int J Pharm 138:237–246

    CAS  Google Scholar 

  77. Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48

    CAS  Google Scholar 

  78. Prabha S, Zhou W-Z, Panyam J et al (2002) Size-dependency of nanoparticle-mediated gene transfection studies with fractionated nanoparticles. Int J Pharm 244:105–115

    CAS  Google Scholar 

  79. Sanchez A, Vila Jato JL, Alonso MJ (1993) Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine. Int J Pharm 99:263–273

    CAS  Google Scholar 

  80. Gomez-Gaete C, Tsapis N, Besnard M et al (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331:153–159

    CAS  Google Scholar 

  81. Labhasetwar V, Song C, Humphrey W et al (1998) Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci 87:1229–1234

    CAS  Google Scholar 

  82. Yin Y, Chen DW, Wei XY et al (2007) Lectin-conjugated PLGA nanoparticles loaded with thymopentin: ex vivo bioadhesion and in vivo biodistribution. J Control Release 123:27–38

    CAS  Google Scholar 

  83. Jin C, Bai L, Wu H et al (2008) Cellular uptake and radiosensitisation off SR-2508 loaded PLGA nanoparticles. J Nanopart Res 10:1045

    CAS  Google Scholar 

  84. Fonseca C, Simoes S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286

    CAS  Google Scholar 

  85. Danhier F, Lecouturier N, Vroman B et al (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133:11–17

    CAS  Google Scholar 

  86. Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Encapsulation of 9- nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm 66:34–41

    CAS  Google Scholar 

  87. Gurny R, Peppas NA, Harrington DD et al (1981) Development of biodegradable and injectable lattices for controlled release potent drugs. Drug Dev Ind Pharm 7:1–25

    CAS  Google Scholar 

  88. Landry FB, Bazile DV, Spenlehauer G et al (1996) Influence of coating agents on the degradation of poly(d, l-lactic acid) nanoparticles in model digestive fluids (USP XXII). Biomaterials 6:195–202

    CAS  Google Scholar 

  89. Tobio M, Gref R, Sanchez A et al (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275

    CAS  Google Scholar 

  90. Ueda H, Kreuter J (1997) Optimization of the preparation of loperamide-loaded poly (l-lactide) nanoparticles by high pressure emulsification solvent evaporation. J Microencapsul 14:593–605

    CAS  Google Scholar 

  91. Ueda M, Iwara A, Kreuter J (1998) Influence of the preparation methods on the drug release behavior of loperamide-loaded nanoparticles. J Microencapsul 15:361–372

    CAS  Google Scholar 

  92. Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22:773–785

    CAS  Google Scholar 

  93. Matsumoto J, Nakada Y, Sakurai K et al (1999) Preparation of nanoparticles consisted of poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) and their evaluation in vitro. Int J Pharm 185:93–101

    CAS  Google Scholar 

  94. Mainardes RM, Gremiao MPD, Brunetti IL et al (2009) Zidovudine-loaded PLA and PLA-PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci 98:257–267

    CAS  Google Scholar 

  95. Konan YN, Berton M, Gurny R et al (2003) Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci 18:241–249

    CAS  Google Scholar 

  96. Perez C, Sanchez A, Putnam D et al (2001) Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release 75:211–224

    CAS  Google Scholar 

  97. Xing J, Zhang D, Tan T (2007) Studies on the oridonin-loaded poly (d, l-lactic acid) nanoparticles in vitro and in vivo. Int J Biol Macromol 40:153–158

    CAS  Google Scholar 

  98. Sonaje K, Italia JL, Sharma G et al (2007) Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res 24:899–908

    CAS  Google Scholar 

  99. Sheng Y, Yuan Y, Liu C et al (2009) In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med 20:1881–1891

    CAS  Google Scholar 

  100. Cheng FY, Wang SF, Su CH et al (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29:2104–2112

    CAS  Google Scholar 

  101. Yoo HS, Oh JE, Lee KH et al (1999) Biodegradable nanoparticles containing PLGA conjugate for sustained release. Pharm Res 16:1114–1118

    CAS  Google Scholar 

  102. Sahana DK, Mittal G, Bhardwaj V et al (2008) PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 97:1530–1542

    CAS  Google Scholar 

  103. Esmaeili F, Ghahremani MH, Ostad SN et al (2008) Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Target 16:415–423

    CAS  Google Scholar 

  104. Teixeira M, Alonso MJ, Pinto MM et al (2005) Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm 59:491–500

    CAS  Google Scholar 

  105. Allemann E, Leroux JC, Gurny R et al (1993) In vitro extended release properties of drug-loaded poly(d, l-lactic acid) nanoparticles produced by salting-out procedure. Pharm Res 10:1732–1737

    CAS  Google Scholar 

  106. Ammoury N, Fessi H, Devissaguet J-P et al (1990) In vitro release pattern of indomethacin from poly(d, l-lactide) nanocapsules. J Pharm Sci 79:763–767

    CAS  Google Scholar 

  107. Ammoury N, Fessi H, Devissaguet J-P et al (1991) Jejunal absorption, pharmacological activity, and pharmacokinetic evaluation of indomethacin-loaded poly(d, l-lactide) and poly(isobutylcyanoacrylate) nanocapsules in rats. Pharm Res 8:101–105

    CAS  Google Scholar 

  108. Elvassore N, Bertucco A, Caliceti P (2001) Production of insulin-loaded poly(ethylene glycol)/poly(l-Lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci 90:1628–1636

    CAS  Google Scholar 

  109. Molpeceres J, Guzman M, Aberturas MR et al (1996) Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci 85:206–213

    CAS  Google Scholar 

  110. Shenoy DB, Amiji MM (2005) Poly (ethylene oxide)-modified poly (epsiloncaprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293:261–270

    CAS  Google Scholar 

  111. Shah LK, Amiji MM (2006) Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 23:2638–2645

    CAS  Google Scholar 

  112. Zheng D, Li X, Xu H et al (2009) Study on docetaxel-loaded nanoparticles with high antitumor efficacy against malignant melanoma. Acta Biochim Biophys Sin (Shanghai) 41:578–587

    CAS  Google Scholar 

  113. Prabu P, Chaudhari AA, Dharmaraj N et al (2008) Preparation, characterization, in-vitro drug release and cellular uptake of poly (caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J Biomed Mater Res 90:1128–1136

    Google Scholar 

  114. Lu Z, Yeh TK, Tsai M et al (2004) Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res 10:7677–7684

    CAS  Google Scholar 

  115. Kaur A, Jain S, Tiwary AK (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 58:61–74

    CAS  Google Scholar 

  116. Bajpai AK, Choubey J (2006) Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 17:345–358

    CAS  Google Scholar 

  117. Bajpai AK, Choubey J (2005) Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles and drug–biopolymer interaction. J Macromol Sci 42:253–275

    Google Scholar 

  118. Sarmento B, Ribeiro A, Veiga F et al (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 12:2198–2206

    Google Scholar 

  119. Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    CAS  Google Scholar 

  120. Terasaka S, Iwasaki Y, Shinya N et al (2006) Fibrin glue and polyglycolic acid nonwoven fabric as a biocompatible dural substitute. Neurosurgery 58:134–139

    Google Scholar 

  121. Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Tech Sports Med 12:158–160

    Google Scholar 

  122. Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer. Macromol Mater Eng 287:116–121

    CAS  Google Scholar 

  123. Sawai D, Takahashi K, Imamura T et al (2002) Preparation of oriented β-form poly(l-lactic acid) by solid-state extrusion. J Polym Sci B Polym Phys 40:95–104

    CAS  Google Scholar 

  124. Cohen S, Alonso MJ, Langer R (1994) Novel approaches to controlled release antigen delivery. Int J Technol Assess Health Care 10:121–130

    CAS  Google Scholar 

  125. Jean-Christophe L, Eric A, Fanny DJ et al (1996) Biodegradable nanoparticles-from sustained release formulations to improved site specific drug delivery. J Control Release 39:339–350

    Google Scholar 

  126. Kumari A, Yadav SK, Pakade YB et al (2011) Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B Biointerfaces 82:224–232

    CAS  Google Scholar 

  127. Hu FX, Neoh KG, Kang ET (2006) Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 27:5725–5733

    CAS  Google Scholar 

  128. Leenstag JW, Pennings AJ, Bos RRM et al (1987) Resorbable materials of polyl-lactides VI. Plates and screws for internal fracture fixation. Biomaterials 8:70–73

    Google Scholar 

  129. Pathiraja AG, Raju A (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    Google Scholar 

  130. Sheridan MH, Shea LD, Peters MC (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102

    CAS  Google Scholar 

  131. Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly (l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20:212–220

    CAS  Google Scholar 

  132. Prabha S, Labhasetwar V (2004) Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm Res 21:354–364

    CAS  Google Scholar 

  133. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102

    CAS  Google Scholar 

  134. Mittal G, Sahana DK, Bhardwaj V et al (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119:77–85

    CAS  Google Scholar 

  135. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    CAS  Google Scholar 

  136. Feng SS (2004) Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev Med Devices 1:115–125

    CAS  Google Scholar 

  137. Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70:353–363

    CAS  Google Scholar 

  138. Nicoli S, Santi P, Couvreur P et al (2001) Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. Int J Pharm 214:31–35

    CAS  Google Scholar 

  139. Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Kaplan D, Lee K (eds) Tissue engineering I, Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 47–90

    Google Scholar 

  140. Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VK, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408

    CAS  Google Scholar 

  141. Gao H, Wang YN, Fan YG et al (2005) Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-beta-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release 107:158–173

    CAS  Google Scholar 

  142. Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly (ethylene glycol) and poly (epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704

    CAS  Google Scholar 

  143. Damge C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117:163–170

    CAS  Google Scholar 

  144. Changyong C, Chae SY, Jae-Won N (2006) Thermosensitive poly(nisopropylacrylamide)-b-poly(ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer 47:4571

    Google Scholar 

  145. Espuelas MS, Legrand P, Loiseau PM et al (2002) In vitro antileishmanial activity of amphotericin B loaded in poly (epsilon-caprolactone) nanospheres. J Drug Target 10:593–599

    CAS  Google Scholar 

  146. Yordanov G, Abrashev N, Dushkin C (2010) Poly(n-butylcyanoacrylate) submicron particles loaded with ciprofloxacin for potential treatment of bacterial infections. Prog Colloid Polym Sci 137:53–59

    CAS  Google Scholar 

  147. Yordanov R, Skrobanska A, Evangelatov A (2012) Entrapment of epirubicin in poly (butyl cyanoacrylate) colloidal nanospheres by nanoprecipitation: formulation development and in vitro studies on cancer cell lines. Colloids Surf B Biointerfaces 92:98–105

    CAS  Google Scholar 

  148. Balland O, Pinto-Alphandary H, Pecquet S et al (1994) The uptake of ampicillin-loaded nanoparticles by murine macrophages infected with Salmonella typhimurium. J Antimicrob Chemother 33:509–522

    CAS  Google Scholar 

  149. Briones E, Colino CI, Lanao JM (2008) Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 125:210–227

    CAS  Google Scholar 

  150. Forestier F, Gerrier P, Chaumard C et al (1992) Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. J Antimicrob Chemother 30:173–179

    CAS  Google Scholar 

  151. Nishioka Y, Yoshino H (2001) Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 47:55–64

    CAS  Google Scholar 

  152. Gulyaev AE, Gelperina SE, Skidan IN et al (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    CAS  Google Scholar 

  153. Ramge P, Unger RE, Oltrogge J et al (2000) Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCE)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 12:1931–1940

    CAS  Google Scholar 

  154. Gursoy A, Eroglu L, Ulutin S et al (1989) Evaluation of indomethacin nanocapsules for their physical stability and inhibitory activity on inflammation and platelet aggregation. Int J Pharm 52:101–108

    CAS  Google Scholar 

  155. Abraham DJ (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan. J Control Release 114:1–14

    Google Scholar 

  156. Baruch L, Machluf M (2006) Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 82:570–579

    CAS  Google Scholar 

  157. Nordtveit RJ, Varum KM, Smidstrod O (1996) Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydr Polym 29:163–167

    CAS  Google Scholar 

  158. Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    CAS  Google Scholar 

  159. Martinac A, Filipovi J, Voinovich D et al (2005) Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm 291:69–77

    CAS  Google Scholar 

  160. Illum L, Jabbal-Gill I, Hinchcliffe M et al (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96

    CAS  Google Scholar 

  161. Onishi H, Takahashi H, Yoshiyasu M et al (2001) Preparation and in vitro properties of N-Succinylchitosan or carboxymethylchitin-mitomycin C conjugate microparticles with specified size. Drug Dev Ind Pharm 27:659–667

    CAS  Google Scholar 

  162. De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface, Application to cyclosporin A. Int J Pharm 224:159–168

    Google Scholar 

  163. Wu Y, Yang W, Wang C et al (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295:235–245

    CAS  Google Scholar 

  164. Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    CAS  Google Scholar 

  165. Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951

    CAS  Google Scholar 

  166. Yao CH, Liu BS, Hsu SH et al (2004) Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res 69A:709–717

    CAS  Google Scholar 

  167. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301

    Google Scholar 

  168. Li JK, Wang N, Wu XS (1998) Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul 15:163–172

    CAS  Google Scholar 

  169. Wheatley DJ, Raco L, Bernacca GM et al (2000) Polyurethane: material for the next generation of heart valve prostheses? Eur J Cardiothorac Surg 17:440–448

    CAS  Google Scholar 

  170. Ganta RS, Piesco PN, Long P (2003) Vascularization and tissue infiltration of a biodegradable polyurethane matrix. J Biomed Mater Res 64A:242–248

    CAS  Google Scholar 

  171. Gangadharam PRJ, Kailasam S, Srinivasan S et al (1994) Experimental chemotherapy of tuberculosis using single dose treatment with isoniazid in biodegradable polymers. Br J Antimicrobial Chemotherapy 33:265–271

    CAS  Google Scholar 

  172. Kailasam S, Wise DL, Gangadharam PRJ (1994) Bioavailability and chemotherapeutic activity of clofazimine against Mycobacterium avium complex infections in beige mice following a single implant of a biodegradable polymer. J Antimicrob Chemother 33:273–279

    CAS  Google Scholar 

  173. Kunou N, Ogura Y, Hashizoe M et al (1996) Biodegradable scleral implant for controlled intraocular delivery of ganciclovir. Proc Int Symp Control Release Bioact Mater 23:711–712

    Google Scholar 

  174. Wang G, Tucker IG, Roberts MS et al (1996) In vitro and in vivo evaluation in rabbits of a controlled release 5-fluorouracil subconjunctival implant based on poly (d, l-lactide-co-glycolide). Pharm Res 13:1059–1064

    CAS  Google Scholar 

  175. Ramchandani M, Robinson D (1998) In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J Control Release 54:167–175

    CAS  Google Scholar 

  176. Lin SS, Ueng SW, Liu SJ et al (1999) Development of biodegradable antibiotic delivery system. Clin Orthop 5:240–250

    Google Scholar 

  177. Lemmouchi Y, Schacht E, Kageruka P et al (1998) Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies. Biomaterials 19:1827–1837

    CAS  Google Scholar 

  178. Song CX, Labhasetwar V, Levy RJ (1996) Modulation of release rates from double-layer poly(lactic-co-glycolic acid) films for periadventital implants in restenosis. Proc Int Symp Control Release Bioact Mater 23:473–474

    Google Scholar 

  179. Hsu Y-Y, Gresser JD, Stewart RR et al (1996) Mechanisms of isoniazid release from poly(d, l-lactide-co-glycolide) matrices prepared by dry-mixing and low density polymeric foam methods. J Pharm Sci 85:706–713

    CAS  Google Scholar 

  180. Cheng L, Lei L, Guo S (2010) In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends. Int J Pharm 387:129–138

    CAS  Google Scholar 

  181. Pandey SK, Banik RM (2011) Extractive fermentation for enhanced production of alkaline phosphatase from Bacillus licheniformis MTCC 1483 using aqueous two-phase systems. Bioresour Technol 102:4226–4231

    CAS  Google Scholar 

  182. Hayashida K, Kanda K, Yaku H et al (2007) Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of prototype model. J Thorac Cardiovasc Surg 134:152–159

    Google Scholar 

  183. Daebrtiz HS, Sachweh SJ, Hermanns B et al (2003) Introduction of a flexible polymeric heart valve prothesis with special design for mitral position. Circulation 108:II-134–II-139

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission (UGC), New Delhi, India, for providing research facilities and financial support to Dr. S.K. Pandey as UGC-Kothari postdoctoral fellow (No.F.4-2/2006(BSR)/13-449/2011) in the Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India. The authors also acknowledge the receipt of research funding from Department of Biotechnology (DBT), New Delhi, Ministry of Science and Technology, Government of India (Project No. BT/PR-6929/BCE/08/433/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pralay Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandey, S.K., Haldar, C., Patel, D.K., Maiti, P. (2013). Biodegradable Polymers for Potential Delivery Systems for Therapeutics. In: Dutta, P., Dutta, J. (eds) Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Advances in Polymer Science, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_198

Download citation

Publish with us

Policies and ethics