Skip to main content

Upscaling Microwave-Assisted Polymerizations

  • Chapter
  • First Online:
Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

Driven by the success of microwave-assisted polymer chemistry as outlined in the other chapters of this series, the need for upscaling these processes has been identified. Within this chapter an overview is given of the general aspects of upscaling microwave-assisted polymerizations via both large batch reactors and continuous flow microwave reactors. Important challenges and limitations such as microwave penetration depth for large batch reactors and intrinsic temperature gradients in tubular flow reactors are discussed. An overview of the literature reports on upscaling of microwave-assisted polymerizations is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM, Matthews

    Google Scholar 

  2. Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley, Weinheim

    Book  Google Scholar 

  3. Leadbeater NE (2014) Microwave-assisted synthesis: general concepts. Adv Polym Sci. 10.1007/12_2013_274

  4. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  5. De la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  Google Scholar 

  6. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094

    Article  CAS  Google Scholar 

  7. Dudley GB, Richert R, Stiegman AE (2015) On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem Sci 6:2144–2152

    Article  CAS  Google Scholar 

  8. Wiesbrock F, Hoogenboom R, Schubert US (2004) Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol Rapid Commun 25:1739–1764

    Article  CAS  Google Scholar 

  9. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28:368–386

    Article  CAS  Google Scholar 

  10. Ebner C, Bodner T, Stelzer F, Wiesbrock F (2011) One decade of microwave-assisted polymerizations: quo vadis? Macromol Rapid Commun 32:254–288

    Article  CAS  Google Scholar 

  11. Kempe K, Becer CR, Schubert US (2011) Microwave-assisted polymerizations: recent status and future perspectives. Macromolecules 44:5825–5842

    Article  CAS  Google Scholar 

  12. Mallakpour S, Zadehnazari A (2013) Microwave-assisted step-growth polymerizations (from polycondensation to C–C coupling). doi:10.1007/12_2013_275

    Google Scholar 

  13. Fang L, Han G, Zhang H (2015) Microwave-assisted free radical polymerizations. doi:10.1007/12_2013_276

    Google Scholar 

  14. Reynaud S, Grassl B (2015) Microwave-assisted controlled radical polymerization. doi:10.1007/12_2014_302

    Google Scholar 

  15. Fimberger M, Wiesbrock F (2015) Microwave-assisted synthesis of polyesters and polyamides by ring-opening polymerization. doi:10.1007/12_2014_293

    Google Scholar 

  16. Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. doi:10.1007/12_2015_340

    Google Scholar 

  17. Englert C, Schwenke AM, Hoeppener S, Weber C, Schubert US (2015) Microwave-assisted polymer modifications. doi:10.1007/12_2015_347

    Google Scholar 

  18. Bogdal D, Bednarz S, Matras-Postolek K (2015) Microwave-assisted synthesis of hybrid polymer materials and composites. doi:10.1007/12_2014_296

    Google Scholar 

  19. Achilias DS (2014) Polymer degradation under microwave irradiation. doi:10.1007/12_2014_292

    Google Scholar 

  20. Perio B, Dozias MJ, Hamelin J (1998) Ecofriendly fast batch synthesis of dioxolanes, dithiolanes, and oxathiolanes without solvent under microwave irradiation. Org Process Res Dev 2:428–430

    Article  CAS  Google Scholar 

  21. Cléophax J, Liagre M, Loupy A, Petit A (2000) Application of focused microwaves to the scale-up of solvent-free organic reactions. Org Process Res Dev 4:498–504

    Article  Google Scholar 

  22. Stadler A, Pichler A, Horeis G, Kappe CO (2002) Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron 58:3177–3183

    Article  CAS  Google Scholar 

  23. Deetlefs M, Seddon KR (2003) Improved preparations of ionic liquids using microwave irradiation. Green Chem 5:181–186

    Article  CAS  Google Scholar 

  24. Lehmann F, Pilotti A, Luthman K (2003) Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol Divers 7:145–152

    Article  CAS  Google Scholar 

  25. Arvela RA, Leadbeater NE, Collins MJ Jr (2005) Automated batch scale-up of microwave-promoted Suzuki and Heck coupling reactions in water using ultra-low metal catalyst concentrations. Tetrahedron 61:9349–9355

    Article  CAS  Google Scholar 

  26. Loones KTJ, Maes BUW, Rombouts G, Hostyn S, Diels G (2005) Microwave-assisted organic synthesis: scale-up of palladium-catalyzed aminations using single-mode and multi-mode microwave equipment. Tetrahedron 61:10338–10348

    Article  CAS  Google Scholar 

  27. Erdmenger T, Paulus RM, Hoogenboom R, Schubert US (2008) Scaling-up the synthesis of 1-butyl-3-methylimidazolium chloride under microwave irradiation. Aust J Chem 61:197–203

    Article  CAS  Google Scholar 

  28. Esveld E, Chemat F, Van Haveren J (2000) Scale continuous microwave dry-media reactor – part II: application to waxy esters production. Chem Eng Technol 23:429–435

    Article  CAS  Google Scholar 

  29. Marquié J, Salmoria G, Poux M, Laporterie A, Dubac J, Roques N (2001) Acylation and related reactions under microwaves. 5. Development to large laboratory scale with a continuous-flow process. Ind Eng Chem Res 40:4485–4490

    Article  Google Scholar 

  30. Shieh WC, Dell S, Repic O (2001) 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org Lett 3:4279–4281

    Article  CAS  Google Scholar 

  31. Pillai UR, Sahle-Demessie E, Varma RS (2004) Hydrodechlorination of chlorinated benzenes in a continuous microwave reactor. Green Chem 6:295–298

    Article  CAS  Google Scholar 

  32. Moseley JD, Lenden P, Lockwood M, Ruda K, Sherlock JP, Thomson AD, Gilday JP (2008) A comparison of commercial microwave reactors for scale-up within process chemistry. Org Process Res Dev 12:30–40

    Article  CAS  Google Scholar 

  33. Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Crovotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice, vol 4, Food engineering series. Springer, New York

    Google Scholar 

  34. Nakamura T, Nagahata R, Suemitsu S, Takeuchi K (2010) In-situ measurement of microwave absorption properties at 2.45 GHz for the polycondensation of lactic acid. Polymer 51:329–333

    Article  CAS  Google Scholar 

  35. You LS, Wu HQ, Zhang WM, Fu Z, Shen LJ (2001) Preparation and stabilization of emulsifier-free macromolecule nanoparticle latex particles. Chin J Chem 19:814–816

    Article  CAS  Google Scholar 

  36. Hoogenboom R, Paulus RM, Pilotti A, Schubert US (2006) Scale-up of microwave-assisted polymerizations in batch mode: the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 27:1556–1560

    Article  CAS  Google Scholar 

  37. Wiesbrock F, Hoogenboom R, Abeln CH, Schubert US (2004) Single-mode microwave ovens as new reaction devices: accelerating the living polymerization of 2-ethyl-2-oxaoline. Macromol Rapid Commun 25:1895–1899

    Article  CAS  Google Scholar 

  38. Petit C, Luef KP, Edler M, Griesser T, Kremsner JM, Stadler A, Grassl B, Reynaud S, Wiesbrock F (2015) Microwave-assisted syntheses in recyclable ionic liquids: photoresists based on renewable resources. ChemSusChem 8:3401–340439

    Article  CAS  Google Scholar 

  39. Pawluczyk JM, McClain RT, Denicola C, Mulhearn JJ, Rudd DJ, Lindsley CW (2007) Microwave-initiated living free radical polymerization: optimization of the preparative scale synthesis of Rasta resins. Tetrahedron Lett 48:1497–1501

    Article  CAS  Google Scholar 

  40. Xu Q, Zhang C, Cai S, Zhu P, Liu L (2010) Large-scale microwave-assisted ring-opening polymerization of e-caprolactone. J Ind Eng Chem 16:872–875

    Article  CAS  Google Scholar 

  41. Li H, Liao L, Liu L (2007) Kinetic investigation into the non-thermal microwave effect on the ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 28:411–416

    Article  CAS  Google Scholar 

  42. Nakamura T, Nagahata R, Kunii K, Soga H, Sugimoto S, Takeuchi K (2010) Large-scale polycondensation of lactic acid using microwave batch reactors. Org Process Res Dev 14:781–786

    Article  CAS  Google Scholar 

  43. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13:794–806

    Article  CAS  Google Scholar 

  44. Paulus RM, Erdmenger T, Becer CR, Hoogenboom R, Schubert US (2007) Scale-up of microwave-assisted polymerizations in continuous-flow mode: cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 28:484–491

    Article  CAS  Google Scholar 

  45. Diehl C, Laurino P, Azzouz N, Seeberger PH (2010) Accelerated continuous flow RAFT polymerization. Macromolecules 43:10311–10314

    Article  CAS  Google Scholar 

  46. Baeten E, Verbraeken B, Hoogenboom R, Junkers T (2015) Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade. Chem Commun 51:11701–11704

    Article  CAS  Google Scholar 

Download references

Acknowledgement

RH acknowledges continuing support from Ghent University and the FWO Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hoogenboom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoogenboom, R. (2016). Upscaling Microwave-Assisted Polymerizations. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2016_348

Download citation

Publish with us

Policies and ethics