Skip to main content

What Is a Pseudomonas syringae Population?

  • Chapter
  • First Online:
Population Genomics: Microorganisms

Part of the book series: Population Genomics ((POGE))

Abstract

Although they are often best known as causative agents of agricultural disease, many phytopathogen lineages, like Pseudomonas syringae, have been sampled across a wide range of environmental contexts. These may be frequently isolated as epiphytes on disease-free plants as well as from sources associated with the water cycle like rivers, lakes, rain, snow, and clouds. The ability of these bacteria to persist across such diverse environments poses a great challenge for understanding population dynamics because adaptation likely occurs across numerous distinct niches and evolutionary parameters and will likely differ widely depending on specific contexts. Within the literature, there is an intrinsic tendency to treat all strains within these lineages the same, but such a treatment likely obscures interesting and important nuances between isolates. In this chapter, I will focus on P. syringae and explore what is known about the evolutionary dynamics of this group at the levels of genomes, phylogroups, and (broadly defined) species. I will highlight many ways in which populations could differ and will touch upon what is known and has been learned from numerous genome sequencing efforts, which hopefully shine a light toward a path forward to resolve numerous nomenclatural challenges. I will point toward the generality of what is known about P. syringae and how this may apply to other environmental systems. While there remains much to learn, the ever-increasing rate of accumulation of genomic data from diverse sources has certainly helped our ability to at least frame the evolutionarily important questions. Building from these, an impending wave of future data promises to be a powerful tool for resolving some of these discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andam CP, et al. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. mBio. 2016;7(2):e02200–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Z, Cartinhour S, Swingle B. Substrate and target sequence length influence RecTE(Psy) recombineering efficiency in Pseudomonas syringae. PLoS One. 2012;7(11):e50617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli C, et al. A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol Plant Pathol. 2015;16(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  • Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999;63(2):266–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berge O, et al. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One. 2014;9(9):e105547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baltrus DA. Divorcing strain classification from species names. Trends Microbiol. 2016;24(6):431–9.

    Article  CAS  PubMed  Google Scholar 

  • Baltrus DA, et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011;7(7):e1002132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltrus DA, et al. Incongruence between multi-locus sequence analysis (MLSA) and whole-genome-based phylogenies: Pseudomonas syringae pathovar pisi as a cautionary tale. Mol Plant Pathol. 2014;15(5):461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: challenges in bacterial molecular plant pathology. Mol Plant Pathol. 2017;18(1):152–68.

    Article  CAS  PubMed  Google Scholar 

  • Busquets A, et al. Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group. Sys Appl Microbiol. 2017;40(5):266–73.

    Article  Google Scholar 

  • Cai R, et al. Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. Tomato and its close relatives as a model. Infect Genet Evol. 2011a;11(7):1738–51.

    Article  PubMed  Google Scholar 

  • Cai R, et al. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog. 2011b;7(8):e1002130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrión VJ, et al. The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One. 2012;7(5):e36709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudoir MJ, Campbell AN, Buckley DH. Grappling with Proteus: population level approaches to understanding microbial diversity. Front Microbiol. 2012;3:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudoir MJ, Doroghazi JR, Buckley DH. Latitude delineates patterns of biogeography in terrestrial Streptomyces. Environ Microbiol. 2016;18(12):4931–45.

    Article  PubMed  Google Scholar 

  • Christner BC, Cai R, et al. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc Nat Acad Sci USA. 2008a;105(48):18854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christner BC, et al. Ubiquity of biological ice nucleators in snowfall. Science. 2008b;319(5867):1214.

    Article  CAS  PubMed  Google Scholar 

  • Collmer A, et al. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A. 2000;97(16):8770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol. 2014;12(4):263–73.

    Article  CAS  PubMed  Google Scholar 

  • Clarke CR, et al. Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact. 2010;23(2):198–210.

    Article  CAS  PubMed  Google Scholar 

  • de Keijzer J, et al. Histological examination of horse chestnut infection by Pseudomonas syringae pv. aesculi and non-destructive heat treatment to stop disease progression. PLoS One. 2012;7(7):e39604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demba Diallo M, et al. Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISMEJ. 2012;6(7):1325–35.

    Article  CAS  Google Scholar 

  • Denamur E, Matic I. Evolution of mutation rates in bacteria. Mol Microbiol. 2006;60(4):820–7.

    Article  CAS  PubMed  Google Scholar 

  • Dillon MM, et al. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. bioRxiv. 2017. https://doi.org/10.1101/227413.

  • Everett KR, et al. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Aust Plant Dis Notes. 2011;6(1):67–71.

    Article  Google Scholar 

  • Failor KC, et al. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISMEJ. 2017. https://doi.org/10.1038/ismej.2017.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Follows MJ, et al. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315(5820):1843–6.

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Sawada H. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. Sci Rep. 2016;6:21399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102–103(1–6):127–44.

    Article  PubMed  Google Scholar 

  • Green S, et al. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One. 2010;5(4):e10224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison TL, et al. No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina. Ecol Evol. 2017;7(12):4367–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendry TA, Hunter MS, Baltrus DA. The facultative symbiont rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol. 2014;80(23):7161–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirano SS, Upper CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev. 2000;64(3):624–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockett KL, et al. Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector. Mol Plant Microbe Interact. 2014;27(9):923–32.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey PT, et al. Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol. 2014;23(6):1497–515.

    Article  CAS  PubMed  Google Scholar 

  • Hwang MSH, et al. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol. 2005;71(9):5182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinose Y, Taguchi F, Mukaihara T. Pathogenicity and virulence factors of Pseudomonas syringae. J Gen Plant Pathol. 2013;79(5):285–96.

    Article  CAS  Google Scholar 

  • Kado CI. Erwinia and related genera. In: Dworkin M, et al., editors. The prokaryotes. New York, NY: Springer; 2006. p. 443–50.

    Chapter  Google Scholar 

  • Karasov TL, et al. Arabidopsis thaliana populations support long-term maintenance and parallel expansions of related Pseudomonas pathogens. bioRxiv. 2018. https://doi.org/10.1101/241760.

  • Kivisaar M. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett. 2010;312(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Kniskern JM, Barrett LG, Bergelson J. Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. Evolution. 2011;65(3):818–30.

    Article  PubMed  Google Scholar 

  • Land M, et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics. 2015;15(2):141–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012;20(4):199–208.

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE. Ice− strains of Pseudomonas syringae introduced to control ice nucleation active strains on potato. In: Biological control of plant diseases, NATO ASI series. Boston, MA: Springer; 1992. p. 169–74.

    Chapter  Google Scholar 

  • Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69(4):1875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Arny DC, Upper CD. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 1982;70(4):1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire B, et al. Biogeographical patterns of legume-nodulating Burkholderia spp.: from African Fynbos to continental scales. Appl Environ Microbiol. 2016;82(17):5099–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  • Lovell HC, et al. Bacterial evolution by genomic island transfer occurs via DNA transformation in plants. Curr Biol. 2009;19(18):1586–90.

    Article  CAS  PubMed  Google Scholar 

  • Lynch M. Evolution of the mutation rate. Trends Genet. 2010;26(8):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCann HC, et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 2013;9(7):e1003503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann HC, et al. Origin and evolution of the kiwifruit canker pandemic. Genome Biol Evol. 2017;9(4):932–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteil CL, et al. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens. New Phytol. 2013;199(3):800–11.

    Article  CAS  PubMed  Google Scholar 

  • Monteil CL, et al. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microb Genom. 2016;2(10):e000089.

    PubMed  PubMed Central  Google Scholar 

  • Morris CE, et al. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISMEJ. 2008;2(3):321–34.

    Article  CAS  Google Scholar 

  • Morris CE, et al. Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio. 2010;1(3). https://doi.org/10.1128/mBio.00107-10.

  • Morris CE, Monteil CL, Berge O. The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol. 2013;51:85–104.

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, et al. Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol. 2014;20(2):341–51.

    Article  PubMed  Google Scholar 

  • Morris CE, et al. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: challenges in bacterial molecular plant pathology. Mol Plant Pathol. 2017;18(2):308–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981;98(3):625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowell RW, et al. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol. 2014;6(6):1514–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien HE, Thakur S, Guttman DS. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu Rev Phytopathol. 2011;49:269–89.

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv. 2016;2(4):e1501630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietsch RB, Vinatzer BA, Schmale DG 3rd. Diversity and abundance of ice nucleating strains of Pseudomonas syringae in a freshwater lake in Virginia, USA. Front Microbiol. 2017;8:318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact. 2008;21(2):269–82.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberg B, Ramel C, Dudler R. Syringolin A: action on plants, regulation of biosynthesis and phylogenetic occurrence of structurally related compounds. In: Pseudomonas syringae pathovars and related pathogens – identification, epidemiology and genomics. Dordrecht: Springer; 2008. p. 249–57.

    Chapter  Google Scholar 

  • Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22(5):235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro BJ, et al. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 2009;17(5):196–204.

    Article  CAS  PubMed  Google Scholar 

  • Sjödin P, et al. On the meaning and existence of an effective population size. Genetics. 2005;169(2):1061–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sniegowski PD, Gerrish PJ. Beneficial mutations and the dynamics of adaptation in asexual populations. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1544):1255–63.

    Article  Google Scholar 

  • Starr MP, Chatterjee AK. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389–426.

    Article  CAS  PubMed  Google Scholar 

  • Stavrinides J, McCloskey JK, Ochman H. Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol. 2009;75(7):2230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopnisek N, et al. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol. 2014;16(6):1503–12.

    Article  CAS  PubMed  Google Scholar 

  • Straub C, et al. The ecological genetics of Pseudomonas syringae residing on the kiwifruit leaf surface. bioRxiv. 2017. https://doi.org/10.1101/235853.

  • Stukenbrock EH, McDonald BA. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol. 2008;46:75–100.

    Article  CAS  PubMed  Google Scholar 

  • Sung W, et al. Evolution of the insertion-deletion mutation rate across the tree of life. G3 (Bethesda). 2016;6(8):2583–91.

    Article  CAS  Google Scholar 

  • Swingle B, et al. Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol. 2010;76(15):4960–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Cauwenberghe J, et al. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol. 2014;37(8):613–21.

    Article  PubMed  Google Scholar 

  • Vinatzer BA, Monteil CL. Pseudomonas syringae genomics: from comparative genomics of individual crop pathogen strains toward population genomics. In: Gross DC, Lichens-Park A, Kole C, editors. Genomics of plant-associated bacteria. Berlin: Springer-Verlag; 2014. p. 79–98.

    Google Scholar 

  • Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu Rev Phytopathol. 2014;52:19–43.

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Tian L, Heath LS. A proposal for a portal to make earth’s microbial diversity easily accessible and searchable. Antonie Van Leeuwenhoek. 2017;110(10):1271–9.

    Article  PubMed  Google Scholar 

  • Wilstermann A, et al. Potential spread of kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae) in Europe. EPPO Bulletin. 2017;47(2):255–62.

    Article  Google Scholar 

  • Wiser MJ, Ribeck N, Lenski RE. Long-term dynamics of adaptation in asexual populations. Science. 2013;342(6164):1364–7.

    Article  CAS  PubMed  Google Scholar 

  • Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39(6):968–84.

    Article  CAS  PubMed  Google Scholar 

  • Xin X-F, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol. 2013;51:473–98.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, et al. Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Appl Environ Microbiol. 2008;74(10):3171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank numerous individuals that helped improve this chapter by reading earlier versions, especially Brians Smith and Kvitko. I would especially like to thank Boris Vinatzer for his thoughtful and careful critique. D.A.B. is supported by the National Science Foundation (NSF) IOS-1354219 and US Department of Agriculture (USDA) 2016-67014-24805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Baltrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baltrus, D.A. (2018). What Is a Pseudomonas syringae Population?. In: Polz, M., Rajora, O. (eds) Population Genomics: Microorganisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_25

Download citation

Publish with us

Policies and ethics