Skip to main content

MR Perfusion in the Lung

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Perfusion is the blood flow of an organ at the capillary level. It is closely related to the blood supply of the lung and moreover to lung function. It is altered in various diseases of the lung such as pulmonary hypertension or cystic fibrosis, etc. Therefore, perfusion is an important functional parameter in the diagnosis of pulmonary diseases, and quantitative values are required to study physiology and pathophysiology of various lung diseases as well as to monitor treatment response. The most popular and clinically established approach to measure the pulmonary perfusion using MRI is based on three-dimensional time-resolved contrast-enhanced T1-weighted sequences. The rapid acquisition of perfusion images facilitates the tracking of the first pass of a contrast agent through the lung parenchyma. Based on this information, it is possible to quantify perfusion in the entire lung using the indicator dilution theory. Quantification is challenging due to potential extravasation of the contrast agent during the first pass as well as the nonlinear relationship between the concentration of the contrast agent and signal intensity. Some of these challenges can be addressed by a dual-bolus technique. Alternatively, pulmonary perfusion can be assessed using contrast agent-free approaches such as arterial spin labeling or Fourier decomposition MRI. Application of these techniques can especially benefit patients for whom the contrast agent administration is contraindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attenberger U, Ingrisch M, Dietrich O et al (2009) Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Investig Radiol 44:525–531

    Article  Google Scholar 

  • Bauman G, Bieri O (2016) Matrix pencil decomposition of time-resolved proton MRI for robust and improved assessment of pulmonary ventilation and perfusion. Magn Reson Med. doi:10.1002/mrm.26096

    Article  PubMed  Google Scholar 

  • Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of Fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  Google Scholar 

  • Bauman G, Lützen U, Ullrich M et al (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260:551–559

    Article  Google Scholar 

  • Bauman G, Scholz A, Rivoire J et al (2013a) Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 69:229–237

    Article  CAS  Google Scholar 

  • Bauman G, Puderbach M, Heimann T et al (2013b) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377

    Article  Google Scholar 

  • Bauman G, Johnson KM, Bell LC et al (2015) Three-dimensional pulmonary perfusion MRI with radial ultrashort echo time and spatial-temporal constrained reconstruction. Magn Reson Med 73:555–564

    Article  Google Scholar 

  • Bell LC, Johnson KM, Fain SB et al (2015) Simultaneous MRI of lung structure and perfusion in a single breathhold. J Magn Reson Imaging 41(1):52–59

    Article  Google Scholar 

  • Berthezene Y, Vexler V, Clement O et al (1992) Contrast-enhanced MR imaging of the lung: assessments of ventilation and perfusion. Radiology 183:667–672

    Article  CAS  Google Scholar 

  • Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo (1)H morphological and functional lung imaging at 1.5 tesla. Magn Reson Med 70:657–663

    Article  CAS  Google Scholar 

  • Bolar DS, Levin DL, Hopkins SR et al (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55:1308–1317

    Article  CAS  Google Scholar 

  • Brix G, Schreiber W, Hoffmann U et al (1997) Methodological approaches to quantitative evaluation of microcirculation in tissues with dynamic magnetic resonance tomography. Radiol 37:470–480

    Google Scholar 

  • Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  CAS  Google Scholar 

  • Capaldi DP, Sheikh K, Guo F et al (2015) Free-breathing pulmonary 1H and Hyperpolarized 3He MRI: comparison in COPD and bronchiectasis. Acad Radiol 22:320–329

    Article  Google Scholar 

  • Chen Q, Levin DL, Kim D et al (1999) Pulmonary disorders: ventilation-perfusion MR imaging with animal models. Radiology 213:871–879

    Article  CAS  Google Scholar 

  • Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR. Radiology 232:677–684

    Article  Google Scholar 

  • Eichinger M, Elzbieta Optazaitea DE, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329

    Article  Google Scholar 

  • Fink C, Puderbach M, Bock M et al (2004a) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  Google Scholar 

  • Fink C, Risse F, Buhmann R et al (2004b) Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI – initial results. Rofo 176:170–174

    Article  CAS  Google Scholar 

  • Fink C, Ley S, Risse F et al (2005a) Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Investig Radiol 40:72–79

    Article  Google Scholar 

  • Fink C, Ley S, Kroeker R et al (2005b) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Investig Radiol 40:40–48

    Article  Google Scholar 

  • Fink C, Puderbach M, Ley S et al (2005c) Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echoshared sequences. Eur Radiol 156:2070–2074

    Article  Google Scholar 

  • Fischer A, Pracht ED, Arnold JF (2008) Assessment of pulmonary perfusion in a single shot using SEEPAGE. J Magn Reson Imaging 27:63–70

    Article  Google Scholar 

  • Fishman AP (1963) Dynamic of the pulmonary circulation. In: Hamilton WF (ed) Handbook of physiology. American Physiological Society, Washington, DC, p. 1708

    Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized auto-calibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  Google Scholar 

  • Hatabu H, Gaa J, Kim D et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  CAS  Google Scholar 

  • Hatabu H, Tadamura E, Levin DL et al (1999) Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 42:1033–1038

    Article  CAS  Google Scholar 

  • Hopkins SR, Prisk GK (2010) Lung perfusion measured using magnetic resonance imaging: New tools for physiological insights into the pulmonary circulation. J Magn Reson Imaging 32(6):1287–1301

    Article  Google Scholar 

  • Hopkins SR, Garg J, Bolar DS et al (2005) Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am J Respir Crit Care Med 171:83–87

    Article  Google Scholar 

  • Hueper K, Parikh MA, Prince MR et al (2013) Quantitative and semiquantitative measures of regional pulmonary microvascular perfusion by magnetic resonance imaging and their relationships to global lung perfusion and lung diffusing capacity: the multiethnic study of atherosclerosis chronic obstructive pulmonary disease study. Investig Radiol 48:223–230

    Article  Google Scholar 

  • Ingrisch M, Dietrich O, Attenberger UI et al (2010) Quantitative pulmonary perfusion magnetic resonance imaging: influence of temporal resolution and signal-to-noise ratio. Investig Radiol 45:7–14

    Article  Google Scholar 

  • Kjørstad Ã…, Corteville DM, Fischer A et al (2014) Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI. Magn Reson Med 72:558–562

    Article  Google Scholar 

  • Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  CAS  Google Scholar 

  • Köstler H, Ritter C, Lipp M et al (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299

    Article  Google Scholar 

  • Kuder TA, Risse F, Eichinger M et al (2008) New method for 3D parametric visualization of contrast-enhanced pulmonary perfusion MRI data. Eur Radiol 18:291–297

    Article  Google Scholar 

  • Levin DL, Chen O, Zhang M et al (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46:166–171

    Article  CAS  Google Scholar 

  • Ley-Zaporozhan J, Molinari F, Risse F et al (2011) Repeatability and reproducibility of quantitative whole-lung perfusion magnetic resonance imaging. J Thorac Imaging 26:230–239

    Article  Google Scholar 

  • Lim RP, Shapiro M, Wang EY et al (2008) 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol 29:1847–1854

    Article  CAS  Google Scholar 

  • Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  CAS  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    Article  CAS  Google Scholar 

  • Nikolaou K, Schoenberg SO, Brix G et al (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Investig Radiol 39:537–545

    Article  Google Scholar 

  • Oechsner M, Mühlhäusler M, Ritter CO et al (2009) Quantitative contrast-enhanced perfusion measurements of the human lung using the prebolus approach. J Magn Reson Imaging 30:104–111

    Article  Google Scholar 

  • Ohno Y, Hatabu H, Murase K et al (2004) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    Article  Google Scholar 

  • Ohno Y, Murase K, Higashino T et al (2007) Assessment of bolus injection protocol with appropriate concentration for quantitative assessment of pulmonary perfusion by dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 25:55–65

    Article  Google Scholar 

  • Ostergaard L, Weisskoff RM, Chesler DA et al (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  Google Scholar 

  • Pracht ED, Arnold JF, Wang T, Jacob PM (2005) Oxygen-enhanced proton imaging of the human lung using T2*. Magn Reson Med 53:1193–1196

    Article  Google Scholar 

  • Pracht ED, Fischer A, Arnold JF et al (2006) Single-shot quantitative perfusion imaging of the human lung. Magn Reson Med 56:1347–1351

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 30:952–962

    Article  Google Scholar 

  • Puderbach M, Risse F, Biederer J et al (2008) In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol 18:2102–2107

    Article  Google Scholar 

  • Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290

    Article  Google Scholar 

  • Risse F, Kuder TA, Kauczor HU et al (2009) Suppression of pulmonary vasculature in lung perfusion MRI using correlation analysis. Eur Radiol:2569–2575

    Article  Google Scholar 

  • Risse F, Eichinger M, Kauczor HU et al (2011) Improved visualization of delayed perfusion in lung MRI. Eur J Radiol 77:105–110

    Article  Google Scholar 

  • Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376 [Epub ahead of print]. Review

    Article  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  Google Scholar 

  • Salehi Ravesh M, Brix G, Laun FB et al (2013) Quantification of pulmonary microcirculation by dynamic contrast-enhanced magnetic resonance imaging: comparison of four regularization methods. Magn Reson Med 69:188–199

    Article  Google Scholar 

  • Schönfeld C, Cebotari S, Voskrebenzev A et al (2015) Performance of perfusion-weighted Fourier decomposition MRI for detection of chronic pulmonary emboli. J Magn Reson Imaging 42(1):72–79

    Article  Google Scholar 

  • Schraml C, Schwenzer NF, Martirosian P et al (2012) Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. MAGMA 25:155–162

    Article  Google Scholar 

  • Sommer G, Bauman G, Koenigkam-Santos M et al (2013) Non-contrast-enhanced preoperative assessment of lung perfusion in patients with non-small-cell lung cancer using Fourier decomposition magnetic resonance imaging. Eur J Radiol 82:e879–e887

    Article  Google Scholar 

  • Sourbron S, Luypaert R, Van Schuerbeek P et al (2004) Deconvolution of dynamic contrast-enhanced MRI data by linear inversion: choice of the regularization parameter. Magn Reson Med 52:209–213

    Article  Google Scholar 

  • Stock KW, Chen Q, Levin DL et al (1999) Demonstration of gravity-dependent lung perfusion with contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 9:557–561

    Article  CAS  Google Scholar 

  • Thews G (1997) Atmung. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 27th edn. Springer, Berlin/Heidelberg/New York, pp. 565–591

    Chapter  Google Scholar 

  • Veldhoen S, Oechsner M, Fischer A et al (2016) Dynamic contrast-enhanced magnetic resonance imaging for quantitative lung perfusion imaging using the dual-bolus approach. Investig Radiol 51:186–193

    Article  CAS  Google Scholar 

  • Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965

    Article  Google Scholar 

  • Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10:393–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Risse, F., Bauman, G. (2016). MR Perfusion in the Lung. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_82

Download citation

  • DOI: https://doi.org/10.1007/174_2016_82

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics