Skip to main content

Adsorption of Polyelectrolytes with Hydrophobic Parts

  • Conference paper
  • First Online:
Characterization of Polymer Surfaces and Thin Films

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 132))

Abstract

Polyelectrolytes offer numerous possibilities for modification of particles, planar inorganic or polymer surfaces, and control of colloidal stability. Significant enhancement of flocculation properties can be achieved through introduction of hydrophobic functionalities into polyelectrolyte backbone that increases surface activity and allow formation of polyelectrolyte aggregates. Here the flocculation performance of a high molecular weight cationic polyelectrolyte with hydrophobic functionalities, PMBQ (poly(methacryloyloxyethyl dimethylbenzyl-ammonium chloride)) was investigated in stable kaolin dispersions using turbidity measurements for efficiency estimation. Polyelectrolyte aggregates of PMBQ obtained at high ionic strength have shown superior flocculation properties in comparison with non-aggregated PMBQ. Remarkable difference in water and salt solutions was found in mono- and multilayer formation using polyanion medium molecular weight polystyrenesulfonate (PSS) and PMBQ. Streaming potential measurements, in-situ SPR and AFM were used to follow and quantify layer build up and charge reversal at the solid/liquid interface at the molecular level. SPR measurements, allowing in-situ control of polyelectrolyte adsorption process, have revealed that the layers thickness depended strongly on ionic strength. However, AFM has shown that the layers obtained had very high roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dautzenberg H, Jaeger W, Kötz J, Phillip B, Seidel Ch, Stscherbina D (1994) Polyelectrolytes. Formation, Characterization and Application. Carl Hanser Verlag, München, p 272

    Google Scholar 

  2. Koetz J, Kosmella S (2002) Interactions of Polyelectrolytes with Clay Surfaces. In: Hubbard A (ed) Encyclopedia of Surface and Colloid Science. Marcel Dekker, Inc, New York 1:2620

    Google Scholar 

  3. Rojas OJ (2002) Adsorption of Polyelectrolytes on Mica. In: Hubbard A (ed) Encyclopedia of Surface and Colloid Science. Marcel Dekker, Inc, New York 1:517

    Google Scholar 

  4. Cohen Stuart MA, Hoogendam CV, de Keizer A (1997) Kinetics of polyelectrolyte adsorption. J Phys, Condens Matter 9:7767

    Google Scholar 

  5. Schwarz S, Buchhammer H-M, Lunkwitz K, Jacobasch HJ (1998) Polyelectrolyte adsorption on charged surfaces: study by electrokinetic measurements. Colloids Surf A: Physicochem Eng Aspects 140(1–3):377–384

    CAS  Google Scholar 

  6. Schwarz S, Eichhorn KJ, Wischerhoff E, Laschewsky A (1999) Polyelectrolyte adsorption onto planar surfaces: a study by streaming potential and ellipsometry measurements. Colloids Surf A: Physicochem Eng Aspects 159:491

    CAS  Google Scholar 

  7. Schuster Ch, Kötz J, Jaeger W, Kulicke WM (1996) Wechselwirkung zwischen Klärschlammpartikeln und Polyelektrolyten, Chem-Ing-Technik 8:980

    Google Scholar 

  8. Bauer D, Buchhammer HM, Fuchs A, Jaeger W, Killmann E, Lunkwitz K, Rehmet R, Schwarz S (1999) Stability of colloidal silica, sikron and polystyrene latex influenced by the adsorption of polycations of different charge density. Coll Surf A 156:291

    Article  CAS  Google Scholar 

  9. Petzold G, Schwarz S, Lunkwitz K (2003) Higher efficiency in particle flocculation by using combinations of oppositely charged polyelectrolytes. Chemical Engineering and Technology 26:48

    Google Scholar 

  10. Solberg D, Wågberg L (2003) Adsorption and flocculation behaviour of cationic polyacrylamide and colloidal silica. Colloids Surf A: Physicochem Eng Aspects 219:161

    Google Scholar 

  11. Buchhammer HM, Oelmann M, Petzold G (2001) Flockung von Dispersionsfarbstoffen in Abwässern mit Polyelektrolytkomplexen, Melliand Textilberichte 5:391

    Google Scholar 

  12. Buchhammer HM, Petzold G, Lunkwitz K (2000) Nanoparticles based on polyelectrolyte complexes: Effect of structure and net charge on the sorption capacity for solved organic molecules. Colloid Polym Sci 278:841

    Article  CAS  Google Scholar 

  13. Petzold G, Nebel A, Buchhammer HM, Lunkwitz K (1998) Preparation and Characterization of Different Polyelectrolyte Complexes and their Application as Flocculants. Colloid Polym Sci 276:125

    Article  CAS  Google Scholar 

  14. Schwarz S, Dragan S (2004) Nonstoichiometric interpolyelectrolyte complexes as colloidal dispersions based on NaPAMPS and their interaction with colloidal silica particles. Macromolecular Symposia 210(1):185

    Article  CAS  Google Scholar 

  15. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210/211:831

    Google Scholar 

  16. Hammond PT (2000) Recent Explorations in Electrostatic Multilayer Thin Film Assembly. Current Opinion Colloid Interface Sci 4:430

    Google Scholar 

  17. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin Polymer-Coatings by Complexation of Polyelectrolytes at Interfaces – Suitable Materials, Structure and Properties. Macromol Rapid Commun 21:319

    Article  CAS  Google Scholar 

  18. Zimmermann A, Jaeger W, Reichert KH (1997) Polyelectrolytes – Dispersion polymerization of a water soluble cationic vinyl monomer. Polymer News 22:390

    CAS  Google Scholar 

  19. Jaeger W, Paulke B-R, Zimmermann A, Lieske A, Wendle U, Bohrisch J (1999) Polymer Prep 40:980

    CAS  Google Scholar 

  20. Schwarz S, Lunkwitz K, Keßler B, Spiegler U, Killmann E, Jaeger W (2000) Adsorption and Stability of Colloidal Silica. Colloids and Surfaces A 163:17

    Article  CAS  Google Scholar 

  21. Bolto BA, Dixon DR, Gray SR, Chee H, Harbour PJ, Ngoc L, Ware AJ (1996) The use of soluble organic polymers in waste treatment. Water Sci Technol 34:117

    Article  CAS  Google Scholar 

  22. Kiriy A, Gorodyska G, Minko S, Jaeger W, Stepanek P, Stamm M (2002) Cascade of Coil-Globule Conformational Transitions of Single Flexible Polyelectrolyte Molecules in Poor Solvent. J Am Chem Soc 124(45):13454

    Article  CAS  Google Scholar 

  23. Minko S, Gorodyska G, Kiriy A, Jaeger W, Stamm M (2002) Visualization of single polyelectrolyte molecules. Polymeric Materials Science and Engineering 87:185

    Google Scholar 

  24. Schönhoff M (2003) Self-Assembled Polyelectrolyte Multilayers. Current Opinion in Colloid and Interface Science 8:86

    Google Scholar 

  25. Schwarz S, Nagel J, Jaeger W (2004) Comparison of Polyelectrolyte Multilayers Built Up with Polydiallyldimethylammonium Chloride and Poly (ethyleneimine) from Salt-Free Solutions by in-situ Surface Plasmon Resonance Measurements. Macromolecular Symposia 211:201

    Google Scholar 

  26. van de Steeg HGM, Cohen Stuart MA, de Keizer A, Bijsterbosch BH (1992) Polyelectrolyte Adsorption: A Subtle balance of Forces. Langmuir 8:2538–2546

    Google Scholar 

Download references

Acknowledgments

The authors thank Norbert Stiehl and Marina Oelmann for a lot of experimental work. Financial support from AiF under the project 12893 BR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schwarz .

Editor information

Karina Grundke Manfred Stamm Hans-Jürgen Adler

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Schwarz, S., Nagel, J., Janke, A., Jaeger, W., Bratskaya, S. Adsorption of Polyelectrolytes with Hydrophobic Parts. In: Grundke, K., Stamm, M., Adler, HJ. (eds) Characterization of Polymer Surfaces and Thin Films. Progress in Colloid and Polymer Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_039

Download citation

Publish with us

Policies and ethics