Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 470))

Abstract

First some concepts of the structural stability and the elementary catastrophe theory are shown. A short chapter explains which types of the catastrophes are typical at elastic structures. Hence the load parameter has a special role among the parameters, a subclassification is needed in the stability analysis. The main part of the paper shows this subclassification and illustrates almost every type by simple elastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnol’d, V. U. (1972). Normal forms for functions near degenerate critical points, the Weyl groups of A k,D k and E k, and Lagrangian singularities. Functional Anal. Appl., 6, 254–272.

    Article  Google Scholar 

  • Augusti, G. (1964). Stabilita’ di strutture elastiche elementari in prezenza di grandi spostamenti. Atti Accad. Sci.fls. mat., Napoli, Serie 3a, 4, No. 5.

    Google Scholar 

  • Domokos, G. (1991). An elastic model with continuous spectrum. Int. Series of Numerical Mathematics, 97, 99–103.

    MathSciNet  Google Scholar 

  • Domokos, G. (1994). Global description of elastic bars. ZAMM, 74(4), T289–T291.

    MathSciNet  Google Scholar 

  • Gaspar, Z. (1977). Buckling models for higher catastrophes. J. Struct. Mech., 5, 375–368.

    Google Scholar 

  • Gaspar, Z. (1982). Critical imperfection territory. J. Struct. Mech., 11, 297–325.

    MathSciNet  Google Scholar 

  • Gaspar, Z. (1985). Imperfection-sensitivity at near-coincidence of two critical points. J. Struct. Mech., 13, 45–65.

    MathSciNet  Google Scholar 

  • Gaspar, Z. (1999). Stability of elastic structures with the aid of catastrophe theory. In Kollar, L., ed., Structural Stability in Engineering Practice. London: Spon. 88–128.

    Google Scholar 

  • Gaspar, Z., Domokos, G. (1991) Global description of the equilibrium paths of a simple mechanical model. In Ivanyi, M., ed., Stability of Steel Structures. Budapest: Akademiai Kiado. 79–86.

    Google Scholar 

  • Gaspar, Z., Lengyel, A. (2002). Critical points of compatibility paths. In Ivanyi, M., ed., Stability and Ductility of Steel Structures, SDSS 2002, Budapest: Akademiai Kiado, 779–785.

    Google Scholar 

  • Gaspar, Z., Mladenov, K. (1996). Post-critical behavior of a column loaded by a polar force. In Ivanyi, M., ed., Stability of Steel Structures, 1995 Budapest, Further Directions in Stability Research and Design. Budapest: Akademiai Kiadó, Vol. II., 897–903.

    Google Scholar 

  • Gaspar, Z., Nemeth, R. (2002). Models to illustrate special bifurcations. (in Hungarian) In Tassi, G., Hegedus, I., Kovacs, T., eds, Scientific Publ. of Department of Struct. Eng., Faculty of Civ. Eng., Budapest Univ. of Technology and Economics. Budapest: Muegyetemi Kiado. 81–92.

    Google Scholar 

  • Gioncu, V., Ivan, M. (1984). Theory of Critical and Post-critical Behaviour of Elastic Structures. (in Rumanian) Bucuresti: Editura Acad. Resp. Soc. Rom..

    Google Scholar 

  • Hackl, K. (1990). Ausbreitung von Instabilitäten in einem Knickmodell von Thompson und Gaspar. ZAMM, 70, T189–T192.

    Article  MathSciNet  Google Scholar 

  • Hegedus, I. (1986). Contribution to Gaspar’s paper: Buckling model for a degenerated case. News Letter, Techn. Univ. of Budapest, 4(1), 8–9.

    Google Scholar 

  • Hegedus, I. (1988). The stability of a hinged bar fixed by weightless chords. News Letter, Techn. Univ. of Budapest, 6(3), 15–22.

    MathSciNet  Google Scholar 

  • Hunt, G. W. (1978). Imperfections and near-coincidence for semi-symmetric bifurcations. Annals of the New York Academy of Sciences, 316, 572–589.

    Article  Google Scholar 

  • Hunt, G. W., Reay, N. A., Yoshimura, T. (1979). Local diffeomorphism in the bifurcational manifestations of the umbilic catastrophes. Proc. Roy. Soc. Lond. A, 369, 47–65.

    MATH  MathSciNet  Google Scholar 

  • Koiter, W. T. (1945). On the Stability of Elastic Equilibrium. (in Holland) Dissertation, Delft, Holland, (English translation: NASA, Techn. Trans., F10, 833, 1967)

    Google Scholar 

  • Kollar, L. P. (1990). Postbuckling behavior of structures having infinitely great critical loads. Mech. Struct. Machines, 18, 17–31.

    Article  Google Scholar 

  • Pajunen, S., Gaspar, Z. (1996). Study of an interactive buckling model — From local to global approach. In Rondal, J., Dubina, D., Gioncu, V., eds, Proc. 2 nd Int. Conf. on Coupled Instabilities in Metal Struct. CIMS’96. London: Imperial College Press. 35–42.

    Google Scholar 

  • Poston, T., Stewart, I. N. (1976). Taylor Expansions and Catastrophes. Research Notes in Mathematics, 7, London: Pitman.

    MATH  Google Scholar 

  • Poston, T., Stewart, I. N. (1978). Catastrophe Theory and its Applications. London: Pitman.

    MATH  Google Scholar 

  • Shanley, F. R. (1947). Inelastic column theory. J. Aero Sci., 14, 261–268.

    Google Scholar 

  • Tarnai, T. (2001). Kinematic bifurcation. In Pellegrino, S., ed., Deployable structures, CISM Courses and Lectures No. 412, Wien: Springer, 143–169.

    Google Scholar 

  • Tarnai, T. (2003). Zero stiffness elastic structures. Int. J. of Mechanical Sciences, 45, 425–431.

    Article  MATH  Google Scholar 

  • Thorn, R. (1972). Stabilité Structurelle et Morphogenése. New York: Benjamin.

    Google Scholar 

  • Thompson, J. M. T., Gaspar, Z. (1977). A buckling model for the set of umbilic catastrophes. Math. Proc. Camb. Phil. Soc., 82, 497–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson, J. M. T., Hunt, G. W. (1973). A General Theory of Elastic Stability. London: Wiley.

    MATH  Google Scholar 

  • Thompson, J. M. T., Hunt, G. W. (1984). Elastic Instability Phenomena. Chichester: Wiley.

    MATH  Google Scholar 

  • Zeeman, E. C. (1977). Catastrophe Theory: Selected Papers (1972–1977). Reading: Addison-Wesley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Gaspar, Z. (2005). Mechanical Models for the Subclasses of Catastrophes. In: Pignataro, M., Gioncu, V. (eds) Phenomenological and Mathematical Modelling of Structural Instabilities. CISM International Centre for Mechanical Sciences, vol 470. Springer, Vienna. https://doi.org/10.1007/3-211-38028-0_5

Download citation

  • DOI: https://doi.org/10.1007/3-211-38028-0_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-25292-5

  • Online ISBN: 978-3-211-38028-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics