Skip to main content

Some aspects of supernova theory: Implosion, explosion and expansion

  • Theoretical aspects of relativistic astrophysics
  • Conference paper
  • First Online:
Gravitational Radiation, Collapsed Objects and Exact Solutions

Part of the book series: Lecture Notes in Physics ((LNP,volume 124))

  • 139 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Radiophysics Publication RPP 2271, January 1979.

  1. Brancazio, P.J. and Cameron, A.G.W. (Eds.), Supernovae and Their Remnants, Gordon and Breach, London, (1969).

    Google Scholar 

  2. Thorne, K.S., in Supernovae and Their Remnants, (Eds. P.J. Brancazio and A.G. Cameron), p. 165, Gordon and Breach, London, (1969).

    Google Scholar 

  3. Caswell, J.L., These proceedings, (1979).

    Google Scholar 

  4. Woltjer, L., Annu.Rev.Astron.Astrophys., 10, 129 (1972).

    Google Scholar 

  5. Colgate, S., in Neutron Stars, Black Holes and Binary X-Ray Sources, (Eds. H. Gursky and R. Ruffini), p. 13 Reidel, Dordrecht, (1975).

    Google Scholar 

  6. We are assuming a core of mass Mc≳1.4 MQ-the Chadrasekhar limit. For Mc≲1.4 MQ, electron degeneracy pressure will be sufficient to prevent the core from collapsing. As long as the overlying material is not too massive the star then quietly evolves to the white dwarf stage without any cataclysmic outburst. Numerical calculations [10–12,15] indicate that evolution to the white dwarf stage occurs for a star of total mass M≾2-3 MQ.

    Google Scholar 

  7. Oppenheimer, J.R. and Volkoff, G.M., Phys.Rev. 55, 374 (1939).

    Google Scholar 

  8. Bahcall, J.N. and Wolf, R.A., Phys.Rev., 140, B1452 (1965).

    Google Scholar 

  9. Ruderman, M., Annu.Rev.Astron.Astrophys., 10, 427 (1972).

    Google Scholar 

  10. Colgate, S. and White, R.H., Astrophys. J., 143, 626 (1966).

    Google Scholar 

  11. Arnett, W.D., Can.J.Phys., 44, 2553 (1966).

    Google Scholar 

  12. Arnett, W.D., Can.J.Phys., 45, 1621 (1967).

    Google Scholar 

  13. Arnett, W.D., Nature, 219, 1344 (1968).

    Google Scholar 

  14. Arnett, W.D., Astrophys.Space.Sci., 5, 180 (1969).

    Google Scholar 

  15. Schwartz, R.A., Ann.Phys., 43, 42 (1969).

    Google Scholar 

  16. Hansen, C.J., Ph.D. Thesis, Yale University, (1966).

    Google Scholar 

  17. A cold neutron core of ∼1.4 MG in static equilibrium has a radius ∼106 cm. The neutrinos produced in the core provide a thermal pressure support to the neutronrich material; further, the core is dynamically evolving. The core radius is then larger than in the cold neutron core case.

    Google Scholar 

  18. Bahcall, J.N., Phys.Rev., 136, B1164 (1964).

    Google Scholar 

  19. Bruen, S.W., Arnett, W.D. and Schramm, D.N., Astrophys J., 213, 213 (1977).

    Google Scholar 

  20. Arnett, W.D., Astrophys. J., 218, 815 (1977)

    Google Scholar 

  21. Colvin, J.D., Van Horn, H.M., Starrfield, S.G. and Truran, J.W., Astrophys. J., 212, 791 (1977).

    Google Scholar 

  22. Lamb, S.A., Howard, W.M., Truran, J.W. and Iben, I., Astrophys. J., 217, 213 (1977).

    Google Scholar 

  23. For instance, the 28Si burning rate is roughly proportional to T40. A small increase in T can then easily initiate explosive burning.

    Google Scholar 

  24. Wilson, J.R., Phys.Rev.Lett., 32, 849 (1974).

    Google Scholar 

  25. Falk, S.W. and Arnett, W.D., Astrophys.J.Suppl.Ser., 33, 515 (1977).

    Google Scholar 

  26. Arnett, W.D., Astrophys.J.Suppl.Ser., 35, 145 (1977).

    Google Scholar 

  27. Wilson, J.R., Astrophys. J., 163, 209 (1971).

    Google Scholar 

  28. Couch, R.G. and Arnett, W.D., Astrophys. J., 180, L101 (1973).

    Google Scholar 

  29. Wheeler, J.C., Buchler, J.R. and Barkat, Z.K., Astrophys. J., 184, 897 (1973).

    Google Scholar 

  30. Buchler, J.R., in Supernovae and Supernova Remnants, (Ed. C.B. Cosmovici), p. 329, Gordon and Breach, London, (1974).

    Google Scholar 

  31. We have added the emphasis. It is currently believed [86] that pulsars possess strong surface magnetic fields (∼1012 G) and are “born” rotating rather rapidly (angular velocity ∼200-103 s−1). If stellar detonation does give rise to neutron stars, and if the observed pulsars are indeed these self-same neutron stars, then the questions of how a stellar core acquires the attributes of high spin and strong magnetic field (and of the dynamical influence of such effects on the collapse and detonation of the star) must be addressed if the theoretician's neutron stars are eventually to be incorporated in the mainstream of astrophysics. To our knowledge, no collapsing star models have yet been constructed incorporating these points.

    Google Scholar 

  32. Weinberg, S., Phys.Rev.Lett., 27, 1688 (1971).

    Google Scholar 

  33. Freedman, D.Z., National Accelerator Laboratory, Publ. B/76-TH7, Batavia,Illinois, (1973).

    Google Scholar 

  34. Woltjer, L., in Interstellar Gas Dynamics (I.A.U. Symp. No. 39), (Ed. H.J. Habing), p. 299, Reidel, Dordrecht. (1970).

    Google Scholar 

  35. Taylor, G.I., Proc.R.Soc.(Lond.), A201, 159, 175 (1950).

    Google Scholar 

  36. Sedov, L., Similarity and Dimensional Methods in Mechanics, Academic Press, New York, (1959).

    Google Scholar 

  37. In fact Solinger et al. [58] have demonstrated quantitatively for several SNRs of interest that neglecting the heat flux (the essence of the adiabatic approximation) is an extremely questionable assumption. Detailed fluid flows under the isothermal approximation (infinitaly rapid heat transfer) have been investigated by Korobeinikov [87], see also [57 ]; the question of stability of self-similar adiabatic fluid flows has recently come under intensive investigation [64,65].

    Google Scholar 

  38. Clark, D.H. and Caswell, J.L., Mon.Not.R.Astron.Soc., 174, 267 (1976).

    Google Scholar 

  39. Shklovsky, I.S., Astron.Zh., 37, 256 and (Soviet Astron-AJ, 4, 243)(1960).

    Google Scholar 

  40. van der Laan, H., Mon.Not.R.Astron.Soc., 124, 125 and 124, 179 (1962).

    Google Scholar 

  41. Duin, R.M. and Strom, R.G., Astron. Astrophys., 39, 33 (1975).

    Google Scholar 

  42. Strom, R.G. and Duin, R.M., Astron. Astrophys., 25, 351 (1973).

    Google Scholar 

  43. Duin, R.M. and van der Laan, H., Astron. Astrophys., 40, 111 (1975).

    Google Scholar 

  44. Hill, I.E., Mon.Not.R.Astron.Soc., 169, 59 (1974).

    Google Scholar 

  45. Moffat, P.H., Mon.Not.R.Astron.Soc., 153, 401 (1971).

    Google Scholar 

  46. Gull, S.F., Mon.Not.R.Astron.Soc., 161, 47 and 162, 135 (1973).

    Google Scholar 

  47. Scott, J.S. and Chevalier, R.A., Astrophys. J., 197, L5 (1975).

    Google Scholar 

  48. Whiteoak, J.B. and Gardner, F.F., Astrophys. J., 154, 807 (1968).

    Google Scholar 

  49. Caswell, J.L. and Lerche, I., Mon.Not.R.Astron.Soc., in press, (1978).

    Google Scholar 

  50. Shklovsky, I.S., Pis'ma Astron.Zh., 2, 244 (Soviet Astron.Lett. 2, 95) (1976).

    Google Scholar 

  51. Poveda, A. and Woltjer, L., Astron.J., 73, 65 (1968).

    Google Scholar 

  52. Kesteven, M.J.L., Aust.J.Phys., 21, 739 (1968).

    Google Scholar 

  53. Willis, A.G., Astron. Astrophys., 26, 237 (1973).

    Google Scholar 

  54. Webber, W.R., Proc.Astron.Soc.Aust., 3, 1 (1976).

    Google Scholar 

  55. Gull, S.F., Mon.Not.R.Astron.Soc., 171, 237 (1975).

    Google Scholar 

  56. Spitzer, L. Jr., Physics of Fully Ionized Gases, Interscience, New York, (1962).

    Google Scholar 

  57. Lerche, I. and Vasyliunas, V.M., Astrophys. J., 210, 85 (1976).

    Google Scholar 

  58. Solinger, A., Rappaport, S. and Buff, J., Astrophys. J., 201, 381 (1975).

    Google Scholar 

  59. Cox, D.P., Astrophys. J., 178, 159 (1972).

    Google Scholar 

  60. Rappaport, S., Doxsey, R., Solinger, A. and Borken, R., Astrophys. J., 194, 329 (1974).

    Google Scholar 

  61. Gorenstein, P., Harnden, F.R. Jr. and Tucker, W.H., Astrophys. J., 192, 661 (1974).

    Google Scholar 

  62. Winkler, P.F. and Clark, G.W., Astrophys.J.Lett., 191, L67 (1974).

    Google Scholar 

  63. In the adiabatic equations d appears in the combination λ17σ; thus the requirement σ → ∞ is particularly severe and can never be satisfied over the entire volume of the system.

    Google Scholar 

  64. Isenberg, P.A., Astrophys. J., 217, 597 (1977).

    Google Scholar 

  65. Bernstein, I.B. and Book, D.L., Astrophys. J., 225, 633 (1978).

    Google Scholar 

  66. Rosenberg, I. and Scheuer, P.G., Mon.Not.R.Astron.Soc., 161, 27 (1973).

    Google Scholar 

  67. Gull, S.F., In Supernovae and Supernova Remnants, (Ed. C.B. Cosmovici), p. 337, Reidel, Dordrecht, (1974).

    Google Scholar 

  68. Lerche, I. and Caswell, J.L., Astron. Astrophys., 77, 117 (1979).

    Google Scholar 

  69. Bell, A.R., Mon.Not.R.Astron.Soc., 179, 573 (1977).

    Google Scholar 

  70. Read, P.L., Mon.Not.R.Astron.Soc., 181, 63P (1977).

    Google Scholar 

  71. Stankevich, K., Aus.J.Phys., in press (1978).

    Google Scholar 

  72. Kulsrud, R.M., Bernstein, I,B., Kruskal, M., Fanucci, J. and Ness, N., Astrophys. J., 142, 491 (1965).

    Google Scholar 

  73. Bell, A.R., Gull, S.F. and Kenderdine, S., Nature, 257, 463 (1975).

    Google Scholar 

  74. Cox, D.P., Astrophys. J., 178, 143 (1972).

    Google Scholar 

  75. Cox, D.P., Astrophys. J., 178, 169 (1972).

    Google Scholar 

  76. Chevalier, R.A., Astrophys. J., 188, 501 (1974).

    Google Scholar 

  77. Straka, W.C., Astrophys. J., 196, 59 (1974).

    Google Scholar 

  78. Mansfield, V.N. and Salpeter, E.E., Astrophys. J., 190 305 (1974).

    Google Scholar 

  79. Parker, E.N., Astrophys. J., 117, 431 (1953).

    Google Scholar 

  80. Field, G.B., Astrophys. J., 142, 531 (1965).

    Google Scholar 

  81. McCray, R., Stein, R.F. and Kafatos, M., Astrophys. J., 196, 565 (1975).

    Google Scholar 

  82. Kafatos, M., Astrophys. J., 182, 443 (1973).

    Google Scholar 

  83. Schwartz, J., McCray, R. and Stein, R.F., Astrophys. J., 175, 673 (1972).

    Google Scholar 

  84. Chevalier, R.A. and Theys, J.C., Astrophys. J., 195, 53 (1975).

    Google Scholar 

  85. Radhakrishnan, V., Froc. I.A.U. Asian-South Pacific Regional Meeting, held Wellington, N.Z., December 1978, (1979).

    Google Scholar 

  86. Manchester, R.N. and Taylor, J.H., Pulsars, W.H. Freeman and Co., San Francisco, (1977).

    Google Scholar 

  87. Korobeinikov, B.P., J.Acad.Sci.USSR, 109, 271 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cyril Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Lerche, I. (1980). Some aspects of supernova theory: Implosion, explosion and expansion. In: Edwards, C. (eds) Gravitational Radiation, Collapsed Objects and Exact Solutions. Lecture Notes in Physics, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09992-1_104

Download citation

  • DOI: https://doi.org/10.1007/3-540-09992-1_104

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09992-5

  • Online ISBN: 978-3-540-39290-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics