Skip to main content

Computation of inviscid transonic internal flow

  • Contributed Papers
  • Conference paper
  • First Online:
Eighth International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 170))

Abstract

Compressible internal flows are studied with an implicit finite difference solution of the full potential equation in conservative form. For numerical stability in supersonic regions an artificial compressibility formulation is introduced. Boundary fitted curvilinear coordinates are used which are stretched in order to cope with regions of strong gradients. The equations are solved by an approximate factorization technique. Results are presented for nozzle flow and for flows through valve inlets with different wall contours. Some results are compared with Mach-Zehnder Interferograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, J. F., Thames, F. C., Mastin, C.W.: Boundary-fitted curvilinear coordinate system for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies. NASA CR-2729 (1977).

    Google Scholar 

  2. Hafez, M., South, J., Murman, E.: Artificial compressibility methods for numerical solutions of transonic full potential equation. AIAA-J., Vol. 17 No. 18, pp. 838–844 (1979).

    Google Scholar 

  3. Holst, T. L., Ballhaus, W. F.: Fast, conservative schemes for the full potential equation applied to transonic flows. AIAA-J., Vol. 17 No. 2, pp. 145–152, (Feb. 79).

    Google Scholar 

  4. Ballhaus, W. F., Jameson, A., Albert, J.: Implicit approximate-factorization schemes for steady transonic flow problems. AIAA-J., Vol. 16 No. 6, pp. 573–579, (June 78).

    Google Scholar 

  5. Holst, T. L.: Fast, conservative algorithm for solving the transonic full-potential equation. AIAA-J., Vol. 18 No. 12, pp. 1431–1439, (Dec. 80).

    Google Scholar 

  6. Holst, T. L.: Implicit algorithm for the conservative transonic full-potential equation using an arbitrary mesh. AIAA-J., Vol. 17 No. 10, pp. 1038–1045, (Oct. 1979).

    Google Scholar 

  7. Jameson, A.: Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1. Communications on Pure and Applied Mathematics, Vol. 27, pp. 283–309 (1974).

    Google Scholar 

  8. Rizzi, A., Viviand, H. (Eds.): Numerical methods for the computation of inviscid transonic flows with shock waves. Friedr. Vieweg u. Sohn, Braunschweig/Wiesbaden (1981).

    Google Scholar 

  9. Föllmer, B. Aerodynamisches Institut, RWTH Aachen (1981), private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Krause

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Giese, U. (1982). Computation of inviscid transonic internal flow. In: Krause, E. (eds) Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11948-5_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-11948-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11948-7

  • Online ISBN: 978-3-540-39532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics