Skip to main content

Gravity, supergravities and integrable systems

  • Session III — Gravity, Supergravity, Supersymmetry
  • Conference paper
  • First Online:
Group Theoretical Methods in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 180))

Abstract

Around 1968 three wonderful concepts emerged in different places and in seemingly unrelated domains of mathematical physics. They are the Kac-Moody algebras (among them the “affine” Kac-Moody algebras are related to current algebras and to gauge groups over one-dimensional “space-times”), the method of inverse scattering (for nonlinear partial differential equations in two-dimensional space-times), and finally the dual string model which is a two-dimensional field theory describing extended particles moving in a space-time of dimension 26 (10 or 2 if one dresses the string with internal degrees of freedom). In the last two years it was realized that gravity and supergravities provide a three-legged bridge between them and this revived hopes (at least with the author) of breaking the 2-dimensionality constraint for the integrability of interesting nonlinear problems. We shall not here discuss the Yang-Mills self-duality equations for lack of space ; they effectively are reduced to two-dimensions by considering the anti-self-dual null 2-planes. After reviewing the known connections between the 3 concepts listed above, we shall present the table of internal Lie symmetries of the Poincaré (super)- gravities in various numbers of dimensions. Finally, we shall see that a Kac-Moody group (affine type I) plays important roles as a) transformation group of solutions, b) parameter space where fields take their values, c) phase-space.

Based on an invited talk given at the Istanbul Conf. on Group Theoretical Methods in Physics, Aug. 1982.

Laboratoire Propre du CNRS, associé à l'Ecole Normale Supérieure et à l'Université de Paris-Sud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.K. Harrison, J. Math. Phys. 9 (1968) 1744.

    Google Scholar 

  2. R. Geroch, J. Math. Phys. 12 (1971) 918.

    Google Scholar 

  3. R. Geroch, J. Math. Phys. 13 (1972) 394.

    Google Scholar 

  4. V. Kac, Funct. An. and Appl. 1 (1967) 82, and Math. USSR Izvestija 32 (1968) 1271; R. Moody, Bull. Am. Math. Soc. 73 (1967) 217, and J. of Algebra 10 (1968) 211.

    Google Scholar 

  5. J. Lepowski and R. Wilson, Comm. Math. Phys. 62 (1978) 43.

    Google Scholar 

  6. G. Segal, Comm. Math. Phys. 80 (1981) 301; I. Frenkel and V. Kac, Inventiones 62 (1980) 23.

    Google Scholar 

  7. G. Veneziano, Nuovo Cim. 57A (1968) 190.

    Google Scholar 

  8. W. Nahm, Nucl. Phys. B114 (1976) 174; J. Scherk, Rev. Mod. Phys. 47 (1975) 123.

    Google Scholar 

  9. F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 253.

    Google Scholar 

  10. I. Frenkel, J. Lepowski and A. Meurman, talk at the Chicago SIAM Workshop, July 1982.

    Google Scholar 

  11. E. Cremmer and B. Julia, Nucl. Phys. 8159 (1979) 141.

    Google Scholar 

  12. C.S. Gardner, J.M. Greene, M.D. Kruskal, R. M. Miura, Phys. Rev. Lett. 19 (1967) 1095.

    Google Scholar 

  13. B.A. Dubrovin, V.B. Matveev and S.P. Novikov, Russian Math. Surveys 31 (1976) 59.

    Google Scholar 

  14. For a review see H. Flaschka and A.C. Newell, Comm. Math. Phys. 76 (1980) 65.

    Google Scholar 

  15. V.E. Zakharov and A.B. Shabat, Funct. Anal. and Appl. 13 (1979) 13.

    Google Scholar 

  16. For a review of 2 dimensional problems see A.V. Mikhailov, CERN preprint TH.3194,(1981).

    Google Scholar 

  17. A.M. Polyakov, Phys. Lett. 103B (1981) 207.

    Google Scholar 

  18. J.L. Gervais and A. Neveu, Nucl. Phys. (to appear).

    Google Scholar 

  19. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, RIMS 362 (July 1981); see also G. Segal and G.. Wilson, Oxford preprint (in preparation).

    Google Scholar 

  20. A.G. Reyman and M.A. Semenov-Tian-Shansky, Inventiones Mat. 63 (1981) 423; and V.G. Drinfeld and V.V. Sokolov, Doklady Acad. Nauk. USSR 258 (1981) 457.

    Google Scholar 

  21. M. Adler, Inventiones Mat. 50 (1979) 219.

    Google Scholar 

  22. B. Julia, in Superspace and Supergravity, ed. S. Hawking and M. Rocek, Cambridge 1981, p. 331 (C.U.P.).

    Google Scholar 

  23. B. Julia, “Kac-Moody Symmetry of Gravitation and Supergravity Theories“ (to be published by A.M.S. in Proc. Chicago Meeting, July 1982).

    Google Scholar 

  24. B. Julia, “Infinite Lie Algebras in Physics”, Proc. 5th Johns Hopkins Workshop on Particle Theory, Baltimore, May 1981, p. 23.

    Google Scholar 

  25. D. Maison, J. Math. Phys. 20 (1978) 871; V.A. Belinsky and V.E. Zakharov, Sov. Phys. JETP 48 (1978) 985 and 50 (1979) 1.

    Google Scholar 

  26. W. Kinnersley and D.M. Chitre, J. Math. Phys. 18 (1977) 1538.

    Google Scholar 

  27. I. Hauser and F.J. Ernst. See for example a review by the first author in the Proc. Coyococ 1980 Conference of this series, Lecture Notes in Physics 135, Springer.

    Google Scholar 

  28. B.C. Xanthopoulos, J. Math. Phys. 22 (1981) 1254.

    Google Scholar 

  29. E. Cremmer, see ref. 22).

    Google Scholar 

  30. M. Lüscher and K. Pohlmeyer, Nucl. Phys. B137 (1978) 46.

    Google Scholar 

  31. L. Dolan, Phys. Rev. Lett. 47 (1981) 1371.

    Google Scholar 

  32. Wu Yong-Shi, Nucl. Phys. B211 (1983) 160.

    Google Scholar 

  33. R.P. Zaikov, Dubna preprints E2-80-118, 197 and with B.L. Markowsky E2-80-654; L. Dolan and A. Roos, Phys. Rev. D22 (1980) 2018.

    Google Scholar 

  34. S. Deser and C. Teitelboim, Phys. Rev. D13 (1976) 1592.

    Google Scholar 

  35. K. Ueno and Y. Nakamura, Phys. Lett. 117B (1982) 208; C. Cosgrove, J. Math. Phys. 23 (1982) 615.

    Google Scholar 

  36. A.C. Davies, P.J. Houston, J.M. Leinaas and A.J. Macfarlane, CERN preprint TH 3372.

    Google Scholar 

  37. V.E. Zakharov, in Lecture Notes in Physics 153 (Springer) p. 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Serdaroğlu E. Ínönü

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Julia, B. (1983). Gravity, supergravities and integrable systems. In: Serdaroğlu, M., Ínönü, E. (eds) Group Theoretical Methods in Physics. Lecture Notes in Physics, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12291-5_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-12291-5_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12291-3

  • Online ISBN: 978-3-540-39621-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics