Skip to main content
  • 5508 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References: Specific References

  1. The Proceedings of the International Conferences on Thermal Analysis (and Calorimetry) can be found in book form under the title: Thermal Analysis. Various publ and edts, 1965, 1969, 1972, 1975, 1977, 1980, 1982. More recent proceedings are published in: Thermochim Acta (1985) 92/93; (1988) 133/135; J Thermal Anal Cal (1993) 40, (1997) 49, (2001) 64.

    Google Scholar 

  2. Proceedings of the annual NATAS Conferences, changing eds, for example:. Kociba KJ, Kociba BJ, eds (2002) Proc. 30th NATAS Conf in Pittsburgh, PA, Sept 23–25, vol 30. Since 2003 the proceedings are issued on CD.

    Google Scholar 

  3. The ITS 90 was initiated on Jan 1, 1990 and is described by Preston-Thomas H, Quinn TJ (1992) The International Temperature Scale of 1990: Parts I and II. In: Murray TP, Shepard RL, eds (1992) Temperature: Its Measurement and Control in Science and Industry, Vol 6, Part 1. Am Inst Physics, New York pp 63–74. See also Preston-Thomas H (1990) Metrologia 27: 3. See there also for the conversion of the IPTS 68 and earlier scales to the ITS 90.

    Google Scholar 

  4. Lavoisier AL (1789) translated by Kerr R (1790) Elements of Chemistry. Part III, Chap III. Edinburgh. Frequently reprinted, for example, printed as a facsimile: (1965) Dover Publications, New York.

    Google Scholar 

  5. For the original paper on the ice calorimeter, see: Bunsen R (1870) Ann Phys 141: 1.

    Google Scholar 

  6. Updyke J, Gay C, Schmidt HH (1966) Improved Precision Ice Calorimeter. Rev Sci Instr, 37: 1010–1013.

    Google Scholar 

  7. Southard JC (1941) A Modified Calorimeter for High Temperatures. The Heat Content of Silica, Wollastonite and Thorium Dioxide above 25°. J Am Chem Soc 63: 3142–3146.

    CAS  Google Scholar 

  8. Sunner S, Manson M (1979) Experimental Chemical Thermodynamics, Vol 1, Combustion Calorimetry. Pergamon, Oxford, 1979.

    Google Scholar 

  9. Nernst W (1911) Der Energieinhalt fester Stoffe. Ann Phys 36: 395–439; see also Lindemann FA, Koref F, Nernst W, (1910) Untersuchungen an specifischen Wärmen bei tiefen Temperaturen. I and II. Sitzber kgl preuss Akad Wiss 12(13): 247–292.

    CAS  Google Scholar 

  10. Tasumi M, Matsuo T, Suga H, Seki S (1975) Adiabatic Calorimeter for High-resolution Heat Capacity Measurements in the Temperature Range from 12 to 300 K. Bull Chem Soc, Japan 48: 3060–3066.

    Google Scholar 

  11. Oetting FL, West ED (1982) An Adiabatic Calorimeter for the Range 300 to 700 K. J Chem Thermodynamics 14: 107–114.

    CAS  Google Scholar 

  12. Chang, SS (1976) A Self-balancing Nanovolt Potentiometer System for Thermometry and Calorimetry. J Res Natl Bur Stand 80A: 669–675.

    CAS  Google Scholar 

  13. Gmelin E, Rödhammer P (1981) Automatic Low Temperature Calorimetry for the Range 0.3–320 K. J Phys E, Instrument 14: 223–238.

    CAS  Google Scholar 

  14. Tian A (1933) Researches on Calorimetry. Generalization of the Method of Electrical Compensation. Microcalorimetry. J Chim Phys 30: 665–708; and Calvet E (1948) Compensated Differential Microcalorimeter. Compt rend 226:1702–1704.

    CAS  Google Scholar 

  15. Palermo E, Chiu J (1976) Critical Review of Methods for the Determination of Purity by Differential Scanning Calorimetry. Thermochim Acta 14: 1–12.

    Article  CAS  Google Scholar 

  16. Moros SA, Stewart D (1976) Automated and Computerized System for Purity Determination by Differential Scanning Calorimetry. Thermochim Acta 14: 13–24.

    Article  CAS  Google Scholar 

  17. Sarge SM, Bauerecker S, Cammenga HK (1988) Calorimetric Determination of Purity by Simulation of DSC Curves. Thermochim Acta 129: 309–324.

    Article  CAS  Google Scholar 

  18. Plato C, Glasgow AR, Jr (1969) Differential Scanning Calorimetry as a General Method for Determining the Purity and Heat of Fusion of High-purity Organic Chemicals. Application to 95 compounds. Anal Chem 41: 330–336 (1969).

    Article  CAS  Google Scholar 

  19. Wunderlich B, Jin Y (1993) Thermal Properties of the Four Allotropes of Carbon. Thermochim Acta 226: 169–176.

    Article  CAS  Google Scholar 

  20. Jin Y, Wunderlich B (1991) The Heat Capacity of n-Paraffins and Polyethylene. J Phys Chem 95: 9000–9007.

    CAS  Google Scholar 

  21. Watson ES, O'Neill MJ, Justin J, Brenner N (1964) Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis. Anal Chem 36: 1233–1238.

    CAS  Google Scholar 

  22. Gill PS, Sauerbrunn SR Reading M (1993) Modulated Differential Scanning Calorimetry. J Thermal Anal 40: 931–939.

    CAS  Google Scholar 

  23. Wunderlich B (1987) Development Towards a Single-Run DSC for Heat Capacity Measurement. J Thermal Anal 32: 1949–1955.

    Article  CAS  Google Scholar 

  24. Jin Y, Wunderlich B (1993) Single-run Heat Capacity Measurement by DSC: Principle, Experimental and Data Analysis. Thermochim Acta 226: 155–161.

    Article  CAS  Google Scholar 

  25. Jin Y, Wunderlich B (1990,1992) Single Run Heat Capacity Measurements. J Thermal Anal 36: 765–789; II. Experiments at Subambient Temperatures. Ibid 36: 1519–1543; III. Data Analysis. Ibid 38: 2257–2272.

    CAS  Google Scholar 

  26. Höhne G, Hemminger W, Flammersheim, HJ (2003) Differential Scanning Calorimetry, 2nd edn, Sect 5.4. Springer, Berlin

    Google Scholar 

  27. Lau SF, Suzuki H, Wunderlich B (1984) The Thermodynamic Properties of Polytetrafluoroethylene. J Polymer Sci, Polymer Phys Ed 22: 379–405.

    CAS  Google Scholar 

  28. Mathot VBF, Pijpers MFJ (1989) Heat Capacity, Enthalpy, and Crystallinity of Polymers from DSC Measurements and Determination of the DSC Peak Baseline. Thermochim Acta 151: 241–259.

    Article  CAS  Google Scholar 

  29. Wunderlich B, Androsch R, Pyda M, Kwon YK (2000) Heat Capacities by Multifrequency Saw-tooth Modulation. Thermochim Acta 348: 181–190.

    Article  CAS  Google Scholar 

  30. Moon I, Androsch R, Wunderlich B (2000) A Calibration of the Various Heat-conduction Paths for a Heat-flux-type Temperature-modulated DSC. Thermochim Acta 357/358: 285–291.

    Article  Google Scholar 

  31. Androsch R, Moon I, Kreitmeier K, Wunderlich B (2000) Determination of Heat Capacity with a Sawtooth-type, Power-compensated Temperature-modulated DSC. Thermochim Acta 357/358: 267–278.

    Article  Google Scholar 

  32. Androsch R, Wunderlich B (1999) Temperature-modulated DSC Using Higher Harmonics of the Fourier Transform. Thermochim Acta 333: 27–32.

    Article  CAS  Google Scholar 

  33. Pak J, Wunderlich B (2001) Heat Capacity by Sawtooth-modulated, Standard Heat-flux Differential Scanning Calorimeter with Close Control of the Heater Temperature. Thermochim Acta 367/368: 229–238.

    Article  Google Scholar 

  34. Kwon YK, Androsch R, Pyda M, Wunderlich B (2001) Multi-frequency Sawtooth Modulation of a Power-compensation Differential Scanning Calorimeter. Thermochim. Acta 367/368: 203–215.

    Google Scholar 

  35. Pyda M, Kwon YK, Wunderlich B (2001) Heat Capacity Measurement by Sawtooth Modulated Standard Heat-flux Differential Scanning Calorimeter with Sample-temperature Control. Thermochim Acta 367/368: 217–227.

    Article  Google Scholar 

  36. Wunderlich B (1997) Modeling the Heat Flow and Heat Capacity of Modulated Differential Scanning Calorimetry. J Thermal Anal 48: 207–224.

    Article  CAS  Google Scholar 

  37. Merzlyakov M, Wurm A, Zorzut M, Schick C (1999) Frequency and Temperature Amplitude Dependence of Complex Heat Capacity in the Melting Region of Polymers, J Macromolecular Sci, Phys 38: 1045–1054.

    Google Scholar 

  38. Toda A, Tomita C, Hikosaka M (1998) Temperature Modulated DSC of Irreversible Melting of Nylon 6 Crystals. J Thermal Analysis 54: 623–635.

    CAS  Google Scholar 

  39. Wunderlich B (2003) Reversible Crystallization and the Rigid Amorphous Phase in Semicrystalline Macromolecules. Progr Polym Sci 28: 383–450.

    Article  CAS  Google Scholar 

  40. Wunderlich, B, Bodily, DM, Kaplan MH (1964) Theory and Measurement of the Glass-transformation Interval of Polystyrene. J Appl Phys 35: 95–102.

    CAS  Google Scholar 

  41. For a series of publications on the glass transitions of polystyrene and poly(ethylene terephthalate) see: Modulated Differential Scanning Calorimetry in the Glass Transition Region, written by: Thomas LC, Boller A, Kreitmeier S, Okazaki I, Wunderlich B (1997) J Thermal Analysis 49: 57–70; Thermochim Acta 291: 85–94; (1996) J Polymer Sci, Part B: Polymer Phys 34: 2941–2952; J Thermal Analysis 47: 1013–1026; Thermochim Acta 284: 1–19.

    Google Scholar 

  42. van Mele B, Rahier H, van Assche G, Swier S (2004) The Application of Modulated Temperature Differential Scanning Calorimetry for the Characterization of Curing Systems. In Reading M, ed, Basic Theory and Practice for Modulated Temperature Differential Scanning Calorimetry. Kluwer, Dordrecht, The Netherlands, pp 72–152.

    Google Scholar 

  43. Schmieder K, Wolf K (1952) The Temperature and Frequency Dependence of the Mechanical Properties of Some High Polymers. Kolloid Z 127: 65–78.

    Article  CAS  Google Scholar 

  44. Wurm A, Merzlyakov M, Schick C (2000) Reversible Melting During Crystallization of Polymers Studied by Temperature Modulated Techniques (TMDSC, TMDMA). J Thermal Anal Calorimetry 60: 807–820; see also: (1998) Reversible Melting Probed by Temperature Modulated Dynamic Mechanical and Calorimetric Measurements. J Colloid Polymer Sci 276: 289–296.

    CAS  Google Scholar 

  45. Schmieder K, Wolf K (1953) Mechanical Relaxation Phenomena in High Polymers. Kolloid Z 134: 149–189.

    Article  CAS  Google Scholar 

  46. Duval C (1951) Continuous Weighing in Analytical Chemistry. Anal Chem 23: 1271–1286.

    Article  CAS  Google Scholar 

  47. Details on the TGA of Figs. 4. 177–180 are described in: Wiedemann HG (1964) Thermogravimetric Investigations. VI. Universal Device for Gravimetric Determinations under Variable Conditions. Chemie Ing Tech 36: 1105–1114.

    CAS  Google Scholar 

  48. Zitomer F (1968) Thermogravimetric Mass Spectrometric Analysis. Anal Chem 40: 1091–1095.

    Article  CAS  Google Scholar 

  49. Paulik F, Paulik J, Erdey L (1958) The “Derivatograph.” I. An Automatic Recording Apparatus for Simultaneously Conducting Differential Thermal Analysis, Thermogravimetry, and Derivative Thermogravimetry. Z anal Chem 160: 241–252. For standardization, quasi-isothermal and isobaric analyses and some example research with the Derivatograph see also: (1966) Anal Chim Acta 34: 419–426; Paulik F, Paulik J (1973) J Thermal Anal 5: 253–270; (1975) 8: 557–576.

    CAS  Google Scholar 

  50. Sørensen OT, Rouquerol J, eds (2003) Sample-controlled Thermal Analysis (SCTA): Orign, Goals, Multiple Forms, Applications, and Future. Kluwer, Amsterdam.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Thermal Analysis Tools. In: Thermal Analysis of Polymeric Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26360-8_4

Download citation

Publish with us

Policies and ethics