Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21: 263–276

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196

    Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytol 88:683–693

    Google Scholar 

  • Al-Raddad A, Adhmad M (1995) Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza 5:233–236

    Google Scholar 

  • Auge RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds D (eds) Mycorrhizal symbiosis: molecular biology and physiology. Kluwer, Dordrecht, pp 201–237

    Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1992) Interaction between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 163–198

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil born-plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between root exudation and VAM induced changes in rhizosphere mycoflora. Mycorrhiza 5:39–44

    Article  Google Scholar 

  • Bansal M, Mukerji KG (1996) Root exudates in rhizosphere biology. In: Mukerji KG, Singh VP (eds) Concepts in applied microbiology and biotechnology. Aditya Book, New Delhi, India, pp 98–120

    Google Scholar 

  • Bansal M, Chamola BP, Sarwer N, Mukerji KG (2000) Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. KA/PP, New York, pp 143–152

    Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground food webs: how plant responses to foliar herbivory influences soil organisms. Soil Biol Biochem 30:1867–1878

    CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (1993) Mycorrhiza and crops. In: Ingram DS, Williams PH (eds) Advances in plant pathology: mycorrhiza synthesis. Academic Press, London, pp 391–416

    Google Scholar 

  • Barea JM, Tober RM, Azcon-Aguilar C (1996) Effect of genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhiza, root morphology, nutrient uptake and biomass accumulation in Medicago sativa L. New Phytol 134:361–369

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculant for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64: 2304–2307

    CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002a) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–351

    CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcon R (2002b) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi, and Rhizobium to improve agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN, Thomus RS (1988) Effect of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Plant Physiol 72:565–571

    CAS  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiontic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  Google Scholar 

  • Briccoli-Bati C, Rinaldi R, Tocci C, Sirianni T, Tannotta N (1994) Influence of salty water irrigation on mycorrhizae of young olive trees in containers. Acta Hortic 356:218–220

    Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545

    Article  CAS  Google Scholar 

  • Burkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117–1124

    Google Scholar 

  • Calvet C, Barea JM, Pera J (1992) In vitro interaction between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24: 775–780

    Article  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    Article  CAS  Google Scholar 

  • Chandraghatgi SP, Sreenivasa MN (1995) Possible synergistic interaction between Glomus macrocarpum and Bacillus polymyxa in chilli. In: Adholeya A, Singh S (eds) Proceeding of 3rd National Conference on Mycorrhiza. TERI, New Delhi, pp 180–183

    Google Scholar 

  • Chao CC, Wang YP (1991) Effects of heavy metals on vesicular arbuscular mycorrhizae and nitrogen fixation of soybean in major soil groups of Taiwan. J Chin Agric Chem Soc 29:290–300

    CAS  Google Scholar 

  • Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:645–649

    Google Scholar 

  • Diaz G, Honrubia M (1993) Infectivity of mine soils from Southeast Spain. II. Mycorrhizal population levels in spoilt sites. Mycorrhiza 4:85–88

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labander-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azosprillum. Aust J Plant Physiol 28:1–9

    Google Scholar 

  • Duke ER, Johnson CR, Koch RE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    CAS  Google Scholar 

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Article  Google Scholar 

  • Ezz T, Nawar A (1994) Salinity and mycorrhizal association in relation to carbohydrate status, leaf chlorophyll and activity of peroxidase and polyphenol oxidase enzymes in sour orange seedlings. Alexandria J Agric Res 39:263–280

    Google Scholar 

  • Faber B, Zasoske R, Munns D, Shackel K (1990) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94

    Google Scholar 

  • Fitter AH, Garbaye J (1994) Interaction between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Gillespie AR, Pope PE (1991) Consequences of rhizosphere acidification on deliver and uptake kinetics of soil phosphorus. Tree Physiol 8: 195–204

    CAS  Google Scholar 

  • Giri B (2001) Mycorrhization in afforestation of stressed habitats. PhD Thesis, Department of Botany, University of Delhi, Delhi, India

    Google Scholar 

  • Giri B, Chamola BP (1999) Vesicular arbuscular mycorrhizal fungi under salinity and drought conditions. In: Tewari JP, Lakhanpal TN, Singh J, Gupta R, Chamola BP (eds) Advances in microbial biotechnology. APH Publ, New Delhi, pp 422–427

    Google Scholar 

  • Giri B, Mukerji KG (1999) Improved growth and productivity of Sesbania grandiflora Pers under salinity stress through mycorrhizal technology. J Phytol Res 12:35–38

    Google Scholar 

  • Giri B, Mukerji KG (2003) Mycorrhizal inoculant alleviates salinity stress in Sesbania aegyptiaca Pres and S. grandiflora Pres under field conditions: evidence for improved magnesium and decreased sodium uptake. Mycorrhiza (published online 23 Oct 2003)

    Google Scholar 

  • Giri B, Kaur M, Mukerji KG (1999) Growth responses and dependency of Sesbania aegyptiaca on vesicular arbuscular mycorrhiza in salt stressed soil. Ann Agric Res 20:109–112

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2000) Sesbania aegyptiaca Pers seedlings response to VA mycorrhization in two types of soil. Phytomorphology 50:327–332

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2002) VAmycorrhizal/VAM technology in establishment of plants under salinity stress conditions. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 313–327

    Google Scholar 

  • Giri B, Kapoor R, Lata A, Mukerji KG (2003a) Preinoculation with arbuscular mycorrhizae helps Acacia auriculiformis in a degraded Indian wasteland soil. Comm Soil Sci Plant Anal [coming in vol 35 issue (1&2)]. Dekker, New York

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003b) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Graham JH, Syvertsen JP, Smith ML (1987) Water relation of mycorrhizal and phosphorus fertilized non-mycorrhizal Citrus under drought stress. New Phytol 105:411–419

    CAS  Google Scholar 

  • Griffioen WAJ, Ietswaart JH, Ernst HO (1994) Mycorrhizal infection of an Agrostis capillaries population on a copper contaminated soil. Plant Soil 158:83–89

    Article  CAS  Google Scholar 

  • Gryndler M, Vejsadova H, Vosatka M, Catska V (1995) Influence of bacteria on vesicular arbuscular mycorrhizal infection of maize. Folia Microbiol 40:95–99

    CAS  Google Scholar 

  • Gupta RK (1991) Drought response in fungi and mycorrhizal plants. In: Arora DK (ed) Hand book of applied mycology, soil and plants. Dekker, New York, pp 55–75

    Google Scholar 

  • Habte H, Soedarjo M (1996) Response of Accacia mangium to vesicular arbuscular mycorrhizal inoculation, soil pH and soil P concentration in an oxisol. Can J Bot 74:155–161

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    Article  CAS  Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    CAS  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza — a key component of sustainable plant soil ecosystem. In: Hock B (ed) The Mycota, vol IX. Fungal association. Springer, Berlin Heidelberg New York, pp 95–113

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant and soil fertility. Biol Fertil Soil 37:1–16

    Google Scholar 

  • Joner E, Roberto B, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Joseph PJ, Sivaprasad P (2000) The potential of arbuscular mycorrhizal associations for biocontrol of soil-borne diseases. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. KA/PP, New York, pp 139–153

    Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Koide R (1993) Physiology of the mycorrhizal plants. Adv Plant Pathol 9:33–54

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lindermann RG (1988) Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effect. Phytopathology 78: 366–371

    Google Scholar 

  • Loth FG, Hofner W (1995) Einfluss der VA-Mykorrhiza auf die Schwermetallaufnahmen von Hafer (Avena sativa L.) in Abhangigheit vom Kontaminationsgrad der Boden. Z Pflanzenernaehr Bodenkd 158: 339–345

    CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York

    Google Scholar 

  • Mancuso S, Rinaldelli E (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves. Adv Hortic Sci 10:135–145

    Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of vesicular arbuscular mycorrhizal infection from fungus spores in soil containing sodium chloride. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Moore JC, McCann K, Setala H, de Ruiter PC (2003) Top-down is bottom-up: dose predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Google Scholar 

  • Mukerji KG (1999) Mycorrhiza in control of plant pathogens: molecular approaches. In: Mukerji KG, Chamola BP, Upadhyay RK (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer/Plenum, New York, pp 135–156

    Google Scholar 

  • Mukerji KG, Chamola BP, Sharma M (1997) Mycorrhiza in control of plant pathogens. In: Agnihotri VP, Sarbhoy A, Singh DV (eds) Management of threatening plant diseases of national importance. MPH, New Delhi pp 297–314

    Google Scholar 

  • Parmelle RW, Ehrenfeld JG, Tate RA (1993) Effects of pine roots on microorganisms, fauna and nitrogen availability in two soil horizons of a coniferous spodosol. Biol Fertil Soils 15:113–119

    Google Scholar 

  • Paulitz TC, Lindermann RG (1991) Mycorrhizal interactions with soil organisms. In: Arora DK, Mukerji KG, Knudsen GR (eds) Hand book of applied mycology, soil and plants. Marcel Dekker, New York, pp 77–129

    Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  CAS  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826

    Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozana MJ (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Postgate JR (1998) Nitrogen fixation. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Probanza A, Lucas Garcia JA, Ruiz Palomino M, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacilli (B.licheniformis CECT 5106 and B. pumillus CECT 5105). Appl Soil Ecol 20:75–84

    Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    CAS  Google Scholar 

  • Requena N, Jimenez I, Barea JM (1996) Bacteria-mycorrhiza interactions in land restoration. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems: from genes to plant development. Office for publications of the European committees, Luxemburg, pp 657–660

    Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interaction between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbiosis aids restoration of desertified ecosystem. Appl Environ Microbiol 67:495–498

    Article  CAS  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. I. Short-term electrophysiological and long-term vegetative salt effects. Adv Hort Sci 10:126–134

    Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Schreiner RP, Bethlenfalvay (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–285

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Bot 33:1069–1073

    Google Scholar 

  • Sharif M (1999) The interaction among phosphate solubilizing bacteria, AM fungus and associative N2 fixing bacteria and their effects on growth and N and P uptake of pearl millet. Pakis J Soil Sci 16:53–62

    Google Scholar 

  • Sharma M, Mukerji KG (1999) VA mycorrhizae by control of fungal pathogens. In: Singh J, Aneja RK (eds) From ethnomycology to fungal biotechnology-exploiting fungi from natural resources for novel products. KA/PP, New York, pp 185–196

    Google Scholar 

  • Sharma M, Mittal N, Kumar RN, Mukerji KG (1998) Fungi: tool for plant diseases management. In: Varma A (ed) Microbes for health, wealth and sustainable environment. MPH, New Delhi, pp 101–154

    Google Scholar 

  • Shetty KG, Banks MK, Hetrick BA, Schwab (1994) Biological characterization of a southeast Kansas mining site. Water Air Soil Pollut 78:169–177

    Article  CAS  Google Scholar 

  • Sidhu OP, Behl HM (1997) Response of three Glomus species on growth of Prosopis juliflora Swartz at high levels. Symbiosis 23: 23–24

    Google Scholar 

  • Simpson D, Daft MJ (1990) Interaction between water stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186

    Google Scholar 

  • Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. KA/PP, New York, pp 173–197

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, 605 pp

    Google Scholar 

  • Spaink HP, Kondorosi A, Hooykass PJJ (1998) The rhizobiaceae. Kluwer, Dordrecht

    Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 1–39

    Google Scholar 

  • Stahl PD, Williams SE (1986) Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium 4 years after application to soil. Soil Biol Biochem 18:451–455

    Article  Google Scholar 

  • Stahl PD, Williams SE, Christensen (1988) Effect of native vesicular arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–353

    Google Scholar 

  • Staley TE, Lawrence, EG, Nance EL (1992) Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorrhizal fungus on alfalfa and bridesfoot trefoil and nodulation. Biol Fertil Soils 14: 175–180

    Article  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Subramanian S, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5: 273–278

    Google Scholar 

  • Syvertsen JP, Graham JH (1990) Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves. Plant Physiol 94:1424–1428

    CAS  Google Scholar 

  • Tarafdar JC (1995) Role of a VAmycorrhizal fungus on growth and water relations in wheat in presence of organic and inorganic phosphate. J Indian Soc Soil Sci 43:200–204

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1996) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100:16–22

    Article  CAS  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–659

    Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-ground and below-ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Varma A, Verma A, Sudha S, Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    CAS  Google Scholar 

  • Vidal MT, Azcon-Aguilar C, Barea JM (1996) Effects of heavy metals (Zn, Cd and Cu) on arbuscular mycorrhiza formation. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhiza in integrated systems: from genes to plant development. European Commission, EUR 16728, Luxembourg, pp 487–490

    Google Scholar 

  • Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystem 2.6 billion years ago. Nature 408:574–578

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metal and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19:22–28

    Article  CAS  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: Gara FO, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs. VCH Verlagsgesellschaft, Weinheim, pp 1–13

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Wilson GWT, Hetrick BAD, Kitt DG (1989) Suppression of vesicular-arbuscular mycorrhizal fungus spore germination by non-sterile soil. Can J Bot 67:18–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giri, B. et al. (2005). Mycorrhizosphere: Strategies and Functions. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_11

Download citation

Publish with us

Policies and ethics