Skip to main content

Noninvasive Real-Time In Vivo Bloluminescent Imaging of Gene Expression and of Tumor Progression and Metastasis

  • Conference paper
Molecular Imaging

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 49))

11.6 Conclusions and Future Perspectives

It is clear from the work presented in this chapter and from work by others that BLI is perfectly suited to monitor gene expression in transgenic reporter mice and to detect and follow small numbers of cells noninvasively. As we have shown, it also enables the quantification of tumor cells within internal organs in animal models of cancer. BLI is a powerful tool in functional genomics of cancer development, progression, and metastasis and will allow us to identify in vivo molecular targets of cancer and their metastasis. The application of BLI in combination with new animal models for cancer will allow us to study very rapidly and conveniently the efficacy of new therapeutic approaches such as gene therapy stem cell therapy and antiangiogenic therapy, and when successful can be a first step towards clinical application. Furthermore, the development of new smart luciferase-based reporter constructs as well as new possibilities to create transgenic animals containing these reporter constructs will make noninvasive in vivo BLI also a powerful new tool in other small animal models of human biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  • Arguello F, Baggs RB, Graves BT, Harwell SE, Cohen HJ, Frantz CN (1992) Effect of IL-1 on experimental bone/bone-marrow metastases. Int J Cancer 52:802–807

    Article  PubMed  CAS  Google Scholar 

  • Bab IA (1995) Postablation bone marrow regeneration: an in vivo model to study differential regulation of bone formation and resorption. Bone [4 Suppl]:437S–441S

    Google Scholar 

  • Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334: 488–493

    Article  PubMed  CAS  Google Scholar 

  • Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs M, Blacklock H, Bell R, Simeone JF, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1998) Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 16: 593–602

    PubMed  CAS  Google Scholar 

  • Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382

    Article  PubMed  CAS  Google Scholar 

  • Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57:3890–3894

    PubMed  CAS  Google Scholar 

  • Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60:2949–2954

    PubMed  CAS  Google Scholar 

  • Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  • Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35:512–516

    PubMed  CAS  Google Scholar 

  • Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446

    PubMed  CAS  Google Scholar 

  • Ciana P, Di Luccio G, Belcredito S, Pollio G, Vegeto E, Tatangelo L, Tiveron C, Maggi A (2001) Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol 15:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MG, Lowik C, Maggi A (2003) In vivo imaging of transcriptionally active estrogen receptors. Nat Med 9:82–86

    Article  PubMed  CAS  Google Scholar 

  • Clemens TL, Tang H, Maeda S, Kesterson RA, Demayo F, Pike JW, Gundberg CM (1997) Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes. J Bone Miner Res 12:1570–1576

    Article  PubMed  CAS  Google Scholar 

  • Clezardin P, Fournier P, Boissier S, Peyruchaud O (2003) In vitro and in vivo antitumor effects of bisphosphonates. Curr Med Chem 10:173–180

    PubMed  CAS  Google Scholar 

  • Clohisy DR, Ramnaraine ML (1998) Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res 16:660–666

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531

    Article  PubMed  CAS  Google Scholar 

  • Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  PubMed  CAS  Google Scholar 

  • Conte PF, Latreille J, Mauriac L, Calabresi F, Santos R, Campos D, Bonneterre J, Francini G, Ford JM (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol 14:2552–2559

    PubMed  CAS  Google Scholar 

  • Desai RK, van Wijnen AJ, Stein JL, Stein GS, Lian JB (1995) Control of 1,25-dihydroxyvitamin D3 receptor-mediated enhancement of osteocalcin gene transcription: effects of perturbing phosphorylation pathways by okadaic acid and staurosporine. Endocrinology 136:5685–5693

    Article  PubMed  CAS  Google Scholar 

  • Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339:357–363

    Article  PubMed  CAS  Google Scholar 

  • Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648

    Article  PubMed  CAS  Google Scholar 

  • Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310

    Article  PubMed  CAS  Google Scholar 

  • El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J (2002) Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 82:1563–1571

    PubMed  Google Scholar 

  • Elomaa I, Blomqvist C, Grohn P, Porkka L, Kairento AL, Selander K, Lamberg-Allardt C, Holmstrom T (1983) Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1:146–149

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Axelrod DW, Melsen F (1994) Bone histomorphometry. Raven Press, New York, pp 3–12

    Google Scholar 

  • Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    PubMed  CAS  Google Scholar 

  • Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, Clezardin P (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6538–6544

    PubMed  CAS  Google Scholar 

  • Frith JC, Monkkonen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(β,γ-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Gao CL, Dean RC, Pinto A, Mooneyhan R, Connelly RR, McLeod DG, Srivastava S, Moul JW (1999) Detection of circulating prostate specific antigen expressing prostatic cells in the bone marrow of radical prostatectomy patients by sensitive reverse transcriptase polymerase chain reaction. J Urol 161:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Green JR (2002) Bisphosphonates in cancer therapy. Curr Opin Oncol 14: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed  Google Scholar 

  • Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Hall DG, Stoica G (1994) Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Miner Res 9:221–230

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Edinger M, Bachmann MH, Negrin RS, Fathman CG, Contag CH (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Hashizume T, Kumahara A, Fujino M, Okada K (2002) Insulin-like growth factor I enhances gonadotropin-releasing hormone-stimulated luteinizing hormone release from bovine anterior pituitary cells. Anim Reprod Sci 70:13–21

    Article  PubMed  CAS  Google Scholar 

  • Heikkila P, Teronen O, Moilanen M, Konttinen YT, Hanemaaijer R, Laitinen M, Maisi P, van der Pluijm G, Bartlett JD, Salo T, Sorsa T (2002) Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anticancer Drugs 13:245–254

    Article  PubMed  CAS  Google Scholar 

  • Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61:4418–4424

    PubMed  CAS  Google Scholar 

  • Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 335:1785–1791

    Article  PubMed  CAS  Google Scholar 

  • Iris B, Zilberman Y, Zeira E, Galun E, Honigman A, Turgeman G, Clemens T, Gazit Z, Gazit D (2003) Molecular imaging of the skeleton: quantitative real-time bioluminescence. J Bone Miner Res 18:570–578

    Article  PubMed  Google Scholar 

  • Kanis JA, Powles T, Paterson AH, McCloskey EV, Ashley S (1996) Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 19:663–667

    Article  PubMed  CAS  Google Scholar 

  • Kassem M, Okazaki R, Harris SA, Spelsberg TC, Conover CA, Riggs BL (1998) Estrogen effects on insulin-like growth factor gene expression in a human osteoblastic cell line with high levels of estrogen receptor. Calcif Tissue Int 62:60–66

    Article  PubMed  CAS  Google Scholar 

  • Kato S (2001) Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer 8:3–9

    Article  PubMed  CAS  Google Scholar 

  • Klotz DM, Hewitt SC, Ciana P, Raviscioni M, Lindzey JK, Foley J, Maggi A, DiAugustine RP, Korach KS (2002) Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-l)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem 277:8531–8537

    Article  PubMed  CAS  Google Scholar 

  • Kostenuik PJ, Singh G, Suyama KL, Orr FW (1993) Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis 10:411–418

    Article  Google Scholar 

  • Lange PH, Vessella RL (1999) Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev 17:331–336

    Article  CAS  Google Scholar 

  • Lee MV, Fong EM, Singer FR, Guenette RS (2001) Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 61:2602–2608

    PubMed  CAS  Google Scholar 

  • Lehtonen-Veromaa M, Mottonen T, Kautiainen H, Heinonen OJ, Viikari J (2001) Influence of physical activity and cessation of training on calcaneal quantitative ultrasound measurements in peripubertal girls: a 1-year prospective study. Calcif Tissue Int 68:146–150

    Article  PubMed  CAS  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13:581–589

    Article  PubMed  CAS  Google Scholar 

  • Mandl S, Schimmelpfennig C, Edinger M, Negrin RS, Contag CH (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem [Suppl] 39:239–248

    Article  CAS  Google Scholar 

  • Mansi JL, Berger U, Easton D, McDonnell T, Redding WH, Gazet JC, McKinna A, Powles TJ, Coombes RC (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J (Clin Res Ed) 295:1093–1096

    Article  CAS  Google Scholar 

  • Melchior SW, Corey E, Ellis WJ, Ross AA, Layton TJ, Oswin MM, Lange PH, Vessella RL (1997) Early tumor cell dissemination in patients with clinically localized carcinoma of the prostate. Clin Cancer Res 3:249–256

    PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR, Yoneda T (1996) Mechanisms of bone metastasis. In: Orr FW, Singh G (eds) Bone metastasis — mechanisms and pathophysiology. Springer, Berlin Heidelberg New York, pp 1–16

    Google Scholar 

  • Ohtsuka M, Shinoda H (1995) Ontogeny of circadian dentinogenesis in the rat incisor. Arch Oral Bid 40:481–485

    Article  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  • Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424

    Article  PubMed  CAS  Google Scholar 

  • Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, Mannisto E, Suovuori A, Atula S, Nevalainen J, Pylkkanen L (2002) Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 20:3219–3224

    Article  PubMed  CAS  Google Scholar 

  • Rodan GA (1998) Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 38:375–388

    Article  PubMed  CAS  Google Scholar 

  • Russell RG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, Croucher PI, Shipman C, Fleisch HA (1999) The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res 14[Suppl 2]:53–65

    PubMed  CAS  Google Scholar 

  • Saarto T, Blomqvist C, Virkkunen P, Elomaa I (2001) Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in nodepositive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 19:10–17

    PubMed  CAS  Google Scholar 

  • Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557

    PubMed  CAS  Google Scholar 

  • Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82:1459–1468

    PubMed  CAS  Google Scholar 

  • Shingo AS, Kito S (2003) Estrogen induces insulin-like growth factor-1 mRNA expression in the immortalized hippocampal cell: determination by quantitative real-time polymerase chain reaction. Neurochem Res 28: 1379–1383

    Article  PubMed  CAS  Google Scholar 

  • Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel antitumor activity. Br J Haematol 98:665–672

    Article  PubMed  CAS  Google Scholar 

  • Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049

    Article  PubMed  CAS  Google Scholar 

  • Teronen O, Heikkila P, Konttinen YT, Laitinen M, Salo T, Hanemaaijer R, Teronen A, Maisi P, Sorsa T (1999) MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci 878:453–465

    Article  PubMed  CAS  Google Scholar 

  • van Beek E, Lowik C, van der Pluijm G, Papapoulos S (1999a) The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 14:722–729

    Article  Google Scholar 

  • van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999b) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264:108–111

    Article  PubMed  Google Scholar 

  • van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98:698–705

    Article  PubMed  Google Scholar 

  • van der Pluijm G, Lowik C, Papapoulos S (2000) Tumor progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev 26:11–27

    Article  PubMed  CAS  Google Scholar 

  • van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C (2001) Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 16:1077–1091

    Article  PubMed  Google Scholar 

  • van der Pluijm G, Karperien M, Löwik CWGM, Wetterwald A, Thalmann GN, Cecchini MG (2002a) Whole body optical imaging of bone turnover and skeletal metastases: pathogenic relationship and therapeutic rationale (abstract). Clin Exp Metastasis 19:T–11

    Google Scholar 

  • van der Pluijm G, Sijmons B, Que I, Buijs J, Cecchini M, Löwik C, Papapoulos S (2002b) Monitoring progression of breast cancer cells in bone/ bone marrow by optical imaging: bisphosphonates do not suppress tumor growth rate and tumor burden (abstract). J Bone Miner Res 17:1091

    Google Scholar 

  • van Holten-Verzantvoort AT, Kroon HM, Bijvoet OL, Cleton FJ, Beex LV, Blijham G, Hermans J, Neijt JP, Papapoulos SE, Sleeboom HP, et al. (1993) Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 11:491–498

    PubMed  Google Scholar 

  • van Holten-Verzantvoort AT, Hermans J, Beex LV, Blijham G, Cleton FJ, van Eck-Smit BC, Sleeboom HP, Papapoulos SE (1996) Does supportive pamidronate treatment prevent or delay the first manifestation of bone metastases in breast cancer patients? Eur J Cancer 32A:450–454

    Article  PubMed  Google Scholar 

  • Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Lowik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153

    PubMed  Google Scholar 

  • Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM, Castronovo V, Green JR (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed  CAS  Google Scholar 

  • Young M (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14[Suppl 3]:S35–42

    PubMed  CAS  Google Scholar 

  • Zhang N, Fang Z, Contag PR, Purchio AF, West DB (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103:617–626

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Feng JQ, Harris SE, Contag PR, Stevenson DK, Contag CH (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res 10:423–434

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Purchio AF, Chen K, Wu J, Lu L, Coffee R, Contag PR, West DB (2003) A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Me-tab Dispos 8:1054–1064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lowik, C.W.G.M., Cecchini, M.G., Maggi, A., van der Pluijm, G. (2005). Noninvasive Real-Time In Vivo Bloluminescent Imaging of Gene Expression and of Tumor Progression and Metastasis. In: Bogdanov, A.A., Licha, K. (eds) Molecular Imaging. Ernst Schering Research Foundation Workshop, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26809-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-26809-X_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21021-4

  • Online ISBN: 978-3-540-26809-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics